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Abstract 

The main topic of this essay is symbolic mathematics or the method 
of symbolic construction, which I trace to the end of the sixteenth 
century when Franciscus Vieta invented the algebraic symbolism and 
started to use the word ‘symbolic’ in the relevant, non-ontological 
sense. This approach has played an important role for many of the 
great inventions in modern mathematics such as the introduction of 
the decimal place-value system of numeration, Descartes’ analytic 
geometry, and Leibniz’s infinitesimal calculus. It was also central for 
the rigorization movement in mathematics in the late nineteenth 
century, as well as for the mathematics of modern physics in the 20th 
century. 

However, the nature of symbolic mathematics has been concealed 
and confused due to the strong influence of the heritage from the 
Euclidean and Aristotelian traditions. This essay sheds some light on 

                                                           
1 I am indebted to Aki Kanamori, Pär Segerdahl, Kim Solin and Anders Öberg for helpful 
comments on an earlier version of this essay. Special thanks to Pär Segerdahl who helped 
me improve the final version of the book on which this article is based. The book is 
entitled The Origin of Symbolic Mathematics and the End of the Science of Quantity, Uppsala 
Department of Philosophy 2014, and is available at: 
<http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-221570> 
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what has been concealed by approaching some of the crucial issues 
from a historical perspective. 

Furthermore, I argue that the conception of modern mathematics 
as symbolic mathematics was essential to Wittgenstein’s approach to 
the foundations and nature of mathematics. This connection between 
Wittgenstein’s thought and symbolic mathematics provides the 
resources for countering the still prevalent view that he defended an 
uttrely idiosyncratic conception, disconnected from the progress of 
serious science. Instead, his project can be seen as clarifying ideas that 
have been crucial to the development of mathematics since early 
modernity. 

1. History and heritage 

The rise of symbolic mathematics in the seventeenth century was 
not just a more or less continuous course of development, or an 
extension, of ancient Greek and medieval mathematical thought. 
As the philosopher Jacob Klein has argued, it was a transformation, 
connected with the extensive cultural change that took place in the 
beginning of modern times. Many essential features of Greek 
mathematical thought came to an end through this transformation 
and therefore no longer belong to our mathematical heritage. New 
forms of mathematical thought were created through the 
transformation, especially due to the increased use of algebraic 
symbolism. 

The normal interest in the history of mathematics (among 
mathematicians who write history of mathematics) is an interest in 
our mathematical heritage. This interest therefore tends to be 
conditioned by the contemporary situation and is not always an 
interest in what actually happened in mathematics of the past 
regardless of the contemporary situation. Only history in the latter 
sense deserves to be called history.2 But history and heritage are 
often confused and one consequence of this kind of confusion is 
that the transformation of mathematics at the beginning of modern 
times is concealed. Features of modern mathematics are projected 
upon mathematics of the past, and the deep contrasts between 
ancient and modern mathematics are concealed. As a consequence, 

                                                           
2 On the difference between history and heritage, see Grattan-Guinness (2004). 
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the nature of modern mathematics as symbolic mathematics is not 
understood as the new beginning of mathematics that it was. 

By taking a closer look at some examples from the history of 
mathematics it will be argued that what actually happened in 
mathematics in the past supports the view that the essence of 
modern mathematics is symbolic mathematics. 

2. Are there proofs by mathematical induction in Euclid’s 
Elements? 

There is quite strong disagreement among historians of 
mathematics about the origin of proof by mathematical induction 
(cf. Bussey 1917, Cajori 1918, Freudenthal 1953, Rabinovitch 1970, 
Fowler 1994, Unguru 1991, 1994). This disagreement is connected 
with the tendency to confuse history and heritage. Was there ever a 
proof by mathematical induction in ancient Greek mathematics? In 
Euclid’s Elements, for instance? Historians of mathematics with a 
heritage view tend to answer these questions affirmatively. 

Sabatai Unguru (1991, 1994) denies this categorically, on the 
ground that it is incompatible with the ancient Greek concept of 
number, according to which numbers are always determinate 
numbers of things as the units of a multitude. The multitudes are not 
seen as having, in general, in themselves or between themselves, a 
serial structure as being generated by a successor operation. A 
multitude always has, at least potentially, a manifestation as a 
multitude of independently given discrete things. In the 
arithmetical proofs in Euclid’s Elements numbers are always 
represented as lengths of line-segments determined by their end-
points. 

The mathematician Hans Freudenthal is one of those who have 
defended the opposite view about the origin of mathematical 
induction. In his article “Zur Geschichte der vollständigen 
Induktion” (Freudenthal 1953), he claims that the propositions IX, 
8; IX, 9 and IX, 20 of Euclid’s Elements (of which the last one is the 
proposition about the infinity of the prime numbers) are all proved 
by mathematical induction. The mathematician Paul Ernst (1982) 
agrees with Freudenthal, and in particular that the proof that there 
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are infinitely many prime numbers uses mathematical induction. 
Let us examine Ernst’s argument in some detail. Ernst asserts 
categorically: 

Mathematical induction is implicit in some of Euclid’s proofs, for 
example, in the proof that there exist infinitely many primes. This 
theorem is Proposition 20 in Book IX of Euclid, and translated it 
states “Prime numbers are more than any assigned multitude of prime 
numbers.” 

Euclid proves the proposition by letting A, B, C be the assigned prime 
numbers, and showing that ABC + 1 has a new prime factor G. The 
conclusion of the proof reads: “Therefore the prime numbers A, B, C, 
G have been found which are more than the assigned multitude of A, 
B, C. Q.E.D.” 

However, Ernst claims that there is a gap in the proof. Something 
is missing between the last sentence in the proof (which concerns 
the particular case of the three assigned prime numbers A, B and 
C) and the generality of the stated proposition that concerns any 
assigned multitude of prime numbers. According to Ernst, 

This gap is bridged by the principle of mathematical induction. What 
Euclid proves, in fact, is that the existence of three primes implies the 
existence of four primes. The method of the proof is general, and can 
be used to prove the existence of n + 1 primes from n primes. 
However, Euclid lacks the algebraic language necessary for this more 
general induction step, and instead represents it by a particular case. 

As pointed out by Mueller (1981), there is no indication that the 
multitudes in Euclid’s Elements were conceived as having a serial 
order, as being generated by something like a successor operation, 

n+1. 

But is Euclid’s proof really a particular case of an “induction 
step” if no serial order is presupposed? 

Quite contrary to what Ernst is suggesting, Euclid never writes 
ABC+1, for instance. He did not have a sign for the operation of 
addition (and he avoided multiplying numbers). He argues 
geometrically by extending the line-segment ABC by the unit line-
segment. This is not just a difference in notation. It means that Euclid 
didn’t have the notion of n+1 as an arithmetical operation, the 
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successor operation as a symbol, which is a prerequisite for 
mathematical induction. A multitude, for Euclid, is just an 
aggregate of things as units, and a number is the number of the 
units of a multitude. 

Ernst is reading Euclid’s proof as if the generality of the proof 
comes from thinking of the assigned multitude of prime numbers 
A, B, C as an arbitrary sequence of prime numbers P1, P2, …, Pn 

that is generated recursively by the method suggested in the proof. 
On the basis of this reading Ernst can say that “The method of the 
proof is general, and can be used to prove the existence of n + 1 
primes from n primes”. But that was hardly Euclid’s way of 
thinking about it. Euclid was thinking about it in geometric terms, 
where numbers are line segments. 

Let us follow Ernst in ‘modernizing’ Euclid’s proof (Elements, 
book IX, § 20) by letting P1, P2, …, Pn be the assigned prime 
numbers. We shall prove that there are more prime numbers than 
these. 

Consider the number P = (P1 × P2 ×… Pn ) + 1. 

P is either a prime number or not. 

If P is prime the proof is complete since P is then a prime number 
different from all the assigned prime numbers P1, P2, …, Pn. 

If P is not a prime number it must have a prime factor Q (by theorem 
VII, § 31 of the Elements). And this prime number must be different 
from all the prime numbers P1, P2, …, Pn because otherwise it would 
be a factor of the unit, which is absurd. 

Therefore, Q is not one of the numbers P1, P2, …, Pn and by 
hypothesis it is prime. So the prime numbers P1, P2, …, Pn, Q have 
been found which are more than the assigned multitude of prime 
numbers P1, P2,…, Pn. 

Therefore, prime numbers are more than any assigned multitude of prime numbers. 

Q.E.D. 

The generality expressed by the variable n in this proof is not the 
generality of a mathematical induction. There is no induction (even 
implicitly) in this modernized version of Euclid’s proof any more 
than in Euclid’s original proof. The generality of the variable n only 
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comes from the fact that the procedure of the proof is independent of 
the specific number of primes chosen as the assigned multitude of prime 
numbers. 

If we would replace the expression P1, P2, …, Pn everywhere in 
this proof with Euclid’s expression A, B, C we would have Euclid’s 
original proof (except that we have not written out the geometrical 
representation of the numbers, and we have defined the number P 
by first multiplying the given prime numbers P1, …, Pn, which 
Euclid does not do).3 This shows that Euclid’s assigned multitude 
of primes A, B, C, has the role of an arbitrary multitude of prime 
numbers in the original proof. One might even say that Euclid is 
taking the number 3 as a number variable. To understand Euclid’s 
proof is also to understand that the assigned multitude of primes A, 
B, C can be replaced, for instance, by the multitude of five primes 
A, B, C, D, E, and then ‘3’ is replaced by ‘5’, but the proof 
procedure would still be the same. 

Euclid’s proof of theorem IX, 20, about the infinity of the 
prime numbers is not the only proof in the Elements where a general 
proposition about numbers is illustrated by a proof that deals with 
a specific finite multitude of numbers in which you are expected to 
see that the proof does not depend on the specific numbers 
chosen. Illustrating a general case in this way by dealing with a 
particular case is rather a common procedure in Euclid’s Elements in 
general (not least in the geometrical theorems, where a specific 
drawn figure, a line-segment, a triangle or a circle, is used to prove 
general results about line segments, triangles and circles). The 
proposition IX, 10, for instance, begins as follows: “If as many 
numbers as we please beginning from a unit are in continued 
proportion, and the number after the unit is square, then all the rest 
are also square.” Euclid begins the proof by saying: “Let there be as 
many numbers as we please, A, B, C, D, E, and F, beginning from 
a unit and in continued proportion, and let A, the number after the 
unit, be square.” Euclid is here dealing with the particular case of six 

                                                           
3  Euclid considers numbers as lengths of line-segments and thus as being ‘one-
dimensional’. He therefore avoids multiplication. Instead he uses Proposition 36 of Book 
VII, according to which “There is a least number which three given numbers measure”, 
which is proved without using multiplication of numbers. 
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numbers, with the required properties. What the phrase ‘as many as 
we please’ signifies is that you are supposed to see that the choice 
of a sequence of six numbers and no more (with the required 
properties) is not essential in the proof. And to see this is not an 
additional inferential step in the proof; it is to see the proof as a proof of 
the general result stated in the theorem. 

From an Aristotelian point of view one might say that there is 
nevertheless a sense in which ‘induction’ is involved in this 
procedure of getting to see something general by dealing with 
particular cases, but it is not mathematical induction, and neither is it 
induction of empirical science. It is rather induction in the sense of 
Aristoteles’ epagoge. Engberg-Pedersen (1979) argues convincingly 
that Aristotle had a unified conception of epagoge, which is not a type 
of inference. It is rather the exercise of the generalizing ability which 
Aristotle calls nous, a sort of intuition. Avoiding the word 
‘conclusion’ which would suggest a type of inference, Engberg-
Pedersen expresses the basic idea of this conception of epagoge as 
“attending to particular cases with the consequence that insight 
into some universal point is acquired” or, alternatively, “acquiring 
insight into some universal point as a consequence of attending to 
particular cases” (Engberg-Pedersen 1979: 305). 

This use of epagoge to see something general by attending to 
particular cases is not an inference, but rather a kind of non-
demonstrative procedure which is a routine procedure in 
mathematical reasoning, such as for instance in geometry when a 
specific, concrete triangle ABC is used as an “arbitrary triangle” in a 
proof of a theorem about triangles in general. So there is no gap in 
Euclid’s proof in the sense that an inferential step is left out when 
he proceeds from particular cases to the universal point at the end 
of the proof of the infinity of prime numbers. 

Did Euclid possess Aristotle’s general notion of epagoge? It 
seems likely that Euclid as well as Aristotle learned this procedure 
of “acquiring insight into some universal point as a consequence of 
attending to particular cases” from mathematics (perhaps in their 
education at Plato’s Academy). It seems likely that Aristotle’s epagoge 
was then the result of extending the applicability of this procedure 
for getting insight into the ‘universal in the particular’ to topics 
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outside mathematics. But why should the mathematician Euclid be 
interested in this general notion of epagoge? Well, Euclid was 
influenced by several features of Aristotle’s philosophical doctrine 
(though not the theory of syllogisms). Euclid employs Aristotle’s 
theory of statements with its distinction between axioms and 
postulates, and he follows Aristotle’s dichotomy between discrete 
and continuous quantity, which persisted in mathematics up to the 
days of Descartes. 

It is tempting to say that Euclid was a mathematician, not a 
philosopher, but the relationship between philosophy and 
mathematics was more complicated in ancient Greece. They did 
not have our sharp divide between philosophy and mathematics as 
two different and independent disciplines and professions. 

Euclid’s Elements is an exposition of the logical order of the 
fundamentals of elementary mathematics. So there is no doubt a 
logical-philosophical context present in the Elements. But that is not 
the only relevant context of the presentation in the Elements. The 
presentation also has pedagogical aims. The way in which epagoge 
may be present in the exposition is also influenced by the 
rhetorical-dialectical situation, where its aim is to get the readers 
and students of the Elements to accept the general points. It is not 
unlikely that Euclid sometimes says as much as is needed to achieve 
that aim. One reading of the basic idea of epagoge, discussed by 
Engberg-Pedersen that seems to be most appropriate here is the 
following: 

leading another person, by pointing to particular cases, towards 
something katholou [universal] with the aim and consequence that he 
acquires insight into it. (Engberg-Pedersen 1979: 301) 

Let us finally stress that to think about a multitude of prime 
numbers as an arbitrary finite sequence of primes, P1, P2, …, Pn, is 
to situate it in an operational context that was foreign to Euclid. It 
is to take for granted how we operate with this symbol in the 
symbolic practice where we have access to the number-variable n to 
express the form of a finite sequence. As stressed by Klein (1968) 
and Unguru (1975), the use of a letter as a number variable in this 
sense was foreign to ancient Greek mathematics. Alphabetic letters 
were used for numbers, but always for determinate numbers. Here 
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we have one of the most essential features of the difference 
between the modern symbolic concept of number and the concept 
of number in ancient Greek mathematics. The symbolic concept is 
essentially connected with the use of a number variable to express 
the form of the result of performing an arithmetical operation. Without this 
use of a number variable, the precise sense of the notion of an 
arithmetical operation is lost. The generality expressed by the variable 
n in a “proof from n to n+1”, which is the generality of a recursive 
pattern or rule, is the specific generality of mathematical induction 
and is bound up with the symbolic concept of number. 

3. Jacob Klein and the origin of symbolic mathematics 

The disagreement about the origin of proof by mathematical 
induction is only a particular case of a more general 
historiographical debate, or quarrel, about the history of ancient 
Greek mathematics that started with Sabatai Unguru’s article “On 
the Need to Rewrite the History of Greek Mathematics”, published 
in 1975.4 Unguru claims that lack of historical sense is a common 
feature of most mathematicians’ readings of ancient mathematical 
texts in that they tend to read the ancient texts only from the point of 
view of modern mathematics. Unguru writes: “to read ancient 
mathematical texts with modern mathematics in mind is the safest 
method for misunderstanding the character of ancient mathematics 
…” The historical approach, according to Unguru, is an approach 
that involves interpretation. It cannot “divorce itself from the 
attempt to unravel the original intentions of the text’s author”, 
which means that the interpreter has to be sensitive to the 
historical-cultural context. 

Klein’s 1968 book Greek Mathematical Thought and the Origin of 
Algebra is an important but rather neglected work in the history and 
philosophy of mathematics.5 Klein’s historical approach anticipates 
Unguru’s main point about the necessity to unravel the original 

                                                           
4 See Kastanis, N. and Thomaidis, Y. (1991), “The term ‘Geometrical Algebra’, target of a 
contemporary epistemological debate”, for a survey of this debate. 
5  A comprehensive survey of the work of Edmund Husserl and Jacob Klein on the 
philosophical foundations of the logic of modern symbolic mathematics appears in 
Hopkins B. C. 2011. 
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intentions of the authors of classical Greek mathematical texts. 
Klein writes at the beginning of his book: 

[…] most of the standard histories attempt to grasp Greek 
mathematics itself with the aid of modern symbolism, as if the latter 
were an altogether external “form” which may be tailored to any 
desirable “content”. And even in the case of investigations intent upon 
a genuine understanding of Greek science, one finds that the enquiry 
starts out from a conceptual level which is, from the very beginning, 
and precisely with respect to the fundamental concepts, determined by 
modern modes of thought. To disengage ourselves as far as possible 
from these modes must be the first concern of our enterprise. (Klein 
1968: 5) 

Klein argues that the modern symbolic concept of number is 
not a further developed and extended version of the ancient Greek 
concept of number (Arithmos). The latter belongs to ancient Greek 
non-symbolic, ontological science. The modern symbolic concept 
of number is an essentially new concept, a concept in a new 
conceptual dimension, which was possible to articulate only 
together with the invention of the algebraic symbolism in the 
seventeenth century. According to Klein, the invention of the 
algebraic symbolism was an essential transformation in the sense 
that new techniques and operational practices were created as the basis for new 
conceptions. But an effect of this conceptual transformation was also 
that the original Greek understanding of numbers was lost, which 
is why Klein’s ‘intentional’ historical method is needed. 

But Klein’s use of this method is meant to have not only 
historiographic interests and motives, he also claims that the 
understanding of the lost Greek conception of numbers may be 
helpful to resolve conceptual difficulties within modern 
mathematics and mathematical physics. He suggests that some of 
these difficulties have their source in the fact that “fundamental 
ontological science of the ancients is replaced by a symbolic discipline” 
(Klein 1968: 184). These difficulties are a main concern of mine in 
this essay. 
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4. The conceptual transformation towards algebraic 
symbolism 

The Greek mathematician who seems to have come closest to the 
conceptual transformation in which algebraic symbolism 
originated, was Diophantus of Alexandria (who lived in the third 
century AD, and who is sometimes called ‘the father of algebra’). 
He was the author of a series of books called Arithmetica that deal 
with solving (what we call) algebraic equations. According to Klein, 
however, it is François Viète (Franciscus Vieta; 1540 –1603) who 
develops the logical and mathematical consequences of 
Diophantus’ work, and who deserves to be called the ‘inventor’ of 
modern mathematics. An important step in Vieta’s work was his 
innovative use of letters as parameters in equations. And it is Vieta 
who introduces the word ‘symbol’ (lat. Symbolum), and talks about 
the symbolic concept of number.6 

Diophantus was working with an arithmetical calculus of 
determinate numbers, a logistice numerosa. Vieta advances 
Diophantus’ problems by introducing a new ‘general analytic’ or an 
‘analytic art’, using not number but merely ‘species’ or ‘forms’ – a 
logistice speciosa. The species or forms correspond to what we would 
call formulas or algebraic expressions. In the articulation of these 
symbolic forms, the use of letters as variables and parameters is 
essential. 

The word ‘species’ or ‘form’ alludes to the ‘eidos’ of Greek 
philosophy, but it is important to understand how its sense has 
been transformed in Vieta’s ‘analytic art’. This is how Klein 
explains the difference: 

[…] the “being” of the species in Vieta, i.e. the “being” of the objects 
of “general analytic,” is to be understood neither as independent in the 
Pythagorean or Platonic sense nor as attained “by abstraction” […] in 
the Aristotelian sense, but as symbolic. The species are in themselves 
symbolic formations – […] They are, therefore, comprehensible only within the 
language of symbolic formalism. […] Therewith the most important tool of 
mathematical natural science, the “formula,” first becomes possible, but 

                                                           
6 Klein says that “The term ‘symbolum,’ used for the letter signs as well as for connective 
signs, originated with Vieta himself” (Klein 1968, 276). 
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above all, a new way of “understanding,” inaccessible to ancient 
episteme is thus opened up. (Klein 1968: 175) 

The essential point of the conceptual transformation that Vieta 
accomplishes is that the concern with determinate numbers of 
units of measurement (of ancient non-symbolic arithmetic), is 
replaced by the forms expressed in an arithmetical-algebraic 
symbolism. So in a certain sense one might say that in the symbolic 
conception, form becomes the content. However, ‘form’ in this 
sense is not ‘typographical form’ or ‘syntactical form’ in the 
modern meta-mathematical sense. ‘Form’ in Vieta’s sense is 
displayed in the operational practices. 

The aspect of mathematics as activity is essential in the logic of 
symbolic mathematics. It is important to understand that the new 
arithmetical-algebraic system of Vieta (as well as the mathesis 
universalis of Simon Stevin, Descartes, and Wallis, who continue and 
complete Vieta’s work) are not new theories of arithmetic, or new 
sciences of number (in the Aristotelian sense of ‘science’), they are 
primarily new arts, new practices, new methods and techniques for 
dealing with problems, not only problems in ‘pure mathematics’ 
but also in cosmology, physics and astronomy. Vieta ends his work 
Isagoge by saying, “Analytic art appropriates to itself by right the 
proud problem of problems, which is: TO LEAVE NO 
PROBLEM UNSOLVED” (quoted in Klein 1968: 185; capitals in 
Vieta’s original). 

Vieta (like Descartes and other founders of modern science) 
had special interests in cosmological and astronomical problems, 
and his mathematical investigations are closely connected to his 
cosmological and astronomical work. The manner in which Vieta 
and other founders of modern science “set about attaining a 
mathematical comprehension of the world’s structure betrays, from 
the outset, a different conception of the world, a different 
conception of the world’s being, than that which had belonged to 
the ancients” (Klein 1968: 152). 
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5. Conflicting views of the role of symbolism in 
mathematics 

Let us return to the Unguru debate. B. L. van der Waerden, a 
professional mathematician as well as a historian of ancient 
mathematics, was one of the mathematicians who reacted 
immediately to Unguru’s strongly polemic article with an equally 
polemic reply in which he accuses Unguru for overestimating the 
importance of symbolism in mathematics. Van der Waerden writes: 

Unguru, like many non-mathematicians, grossly overestimates the 
importance of symbolism in mathematics. These people see our 
papers full of formulae, and they think that these formulae are an 
essential part of mathematical thinking. We, working mathematicians, 
know that in many cases the formulae are not at all essential, only 
convenient. (Van der Waerden 1975: 205) 

According to Unguru (following Klein 1968), the emergence of 
algebra and symbolic mathematics in the seventeenth century, in 
particular the use of letters as variables and parameters, marks the 
beginning of an essential conceptual transformation of 
mathematics, while for van der Waerden the introduction of 
algebraic symbolism was only the invention of a more convenient 
notation to express a mathematical content that was in many 
respects the same as what it always has been. The content of 
Euclid’s Elements II, for instance, is algebra according to van der 
Waerden and Freudenthal – it is ‘geometric algebra’, algebraic 
relationships expressed in geometric form due to the lack of the 
algebraic notation for expressing the algebraic content in classical 
Greek mathematics.7 

In this controversy, I find myself in agreement with Klein, 
Unguru and their followers (with some reservations concerning 
Unguru’s argumentation to be discussed later). The lack of 
sensitivity to, and interest in, features of the mathematical 
symbolism that are conceptually significant is not uncommon among 
‘working mathematicians’ (and logicians), who have a tendency to 
think of a symbolism as a system of notations, a system of mere 

                                                           
7 These conflicting views depend on the difference between a symbolism and a system of 
notation. 
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typographical signs which are conceived in naturalistic terms, and 
this forces them to adopt a kind of dualism between form and 
content, expression and meaning, syntax and semantics. Carnap 
even said that “[s]yntax, pure and descriptive, is nothing more than 
the mathematics and physics of language” (Carnap 1959: 284).8 

The lack of sensitivity to conceptually significant features of 
symbolism makes it difficult to distinguish between philosophical 
and mathematical problems. The attitude of a mathematician is 
often that something deserves to be called a real problem only 
when it can be dealt with and solved mathematically (this was, for 
instance, Hilbert’s attitude to the consistency problem in his article 
“On the infinite” (1926)). Mathematicians are masters in using the 
mathematical symbolism, but not in reflecting upon this use. The 
latter requires that you pay attention to the symbolic practices from 
an outlook where the normal (silent) agreement in modern 
mathematical practices is put into focus. 

Looking at ancient Greek mathematics from within the normal 
agreement in the practice of modern mathematics, there is always 
the risk of misunderstanding the non-temporality or timelessness of 
the sense or content of a mathematical rule or statement as if this 
timelessness were the infinite temporal duration of the content, the 
permanence of the content in time. But that the non-temporality of 
a rule or statement within mathematics is timelessness must be taken 
seriously; it is lack of any temporal significance or reference, 
including ‘endless temporal duration’ or permanence. I think that it 
is by taking timelessness as infinite temporal duration that Van der 
Waerden and Freudenthal are led to say that the algebraic content 
of an equation such as 

(a + b)2 = a2 + b2 + 2ab 

was present already in Euclid’s times “at least implicitly”, although 
this content was given a geometrical disguise in Euclid’s Elements II. 
This is very doubtful in view of the fact that Euclid never 
multiplied geometric lengths or any other geometric magnitudes. If 
‘a’ and ‘b’ are geometric lengths, the expressions ‘a2’, ‘b2’and ‘ab’ 
                                                           
8 Carnap’s notion of syntax, which is based on a naturalistic view of language, is very far 
from what Wittgenstein meant by ’logical syntax’ in the Tractatus. 
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seem not to have made sense to Euclid since they are of another 
dimension than ‘a’ and ‘b’. It was not until Descartes’ analytic 
geometry (which was based on Descartes’ symbolic conception of 
geometry) that such ‘mixtures’ of arithmetic and geometry were 
made sense of. 

The algebraic content of the equation above is inseparable from 
its algebraic proof, and its proof is the transformation of the left-
hand side of the equation into the right-hand side using the rules of 
the algebraic calculus (that was set up and used not before the 17th 
century). 

A mathematician, or rather a mathematical physicist, with 
sensitivity to, and interest in, conceptually significant features of 
mathematical symbolism was Heinrich Hertz. His attitude to the 
role of mathematical symbolism was therefore also quite the 
opposite of van der Waerden’s, who takes mathematical 
symbolisms to be merely more of less convenient systems of 
notation. Hertz wrote: 

We cannot escape the feeling that these mathematical formulas have 
an independent existence and an intelligence of their own, that they 
are wiser than we are, wiser even than their discoverers, that we get 
more out of them than was originally put into them. (Quoted in Bell 
1937: 31) 

Hertz’ work on the mathematics of classical mechanics in which he 
showed how to deal with conceptual problems connected, for 
instance, with the notion of force of classical mechanics was an 
important and influential contribution to the symbolic point of 
view. I believe that Ernst Cassirer was right when he said: 
“Heinrich Hertz is the first modern scientist to have effected a 
decisive turn from the copy theory of physical knowledge to a 
purely symbolic theory” (Cassirer 1957: 20). 9  Hertz saw the 
scientific theory as the application of a symbolic system, which is 
an autonomous entity in its formal aspect, independent of the 
empirical phenomena it is used to explain. By “the principles of 
mechanics”, will be meant, says Hertz, “any selection of such and 

                                                           
9 By the ‘copy theory’ Cassirer meant a view of physical theory that we find, for instance, 
in Ernst Mach’s writings. 
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similar propositions, which satisfies the requirement that the whole 
of mechanics can be developed from it by purely deductive 
reasoning without any further appeal to experience” (Hertz 1956: 4; 
emphasis added). Hertz showed that the problems connected with 
the notion of force do not relate to the empirical content of the 
problematic notions of mechanics, “but only to the form in which 
the content is represented”, i.e. the conceptual problems are 
problems of the symbolism (Hertz 1956: 8). This is how Hertz 
himself motivated this feature of his work: 
 

… the existing defects are only defects in form; […] all indistinctness 
and uncertainty can be avoided by suitable arrangement of definitions 
and notations, and by due care in the mode of expression. (Hertz 
1956: 9) 

6. Wittgenstein and symbolic mathematics 

The mentioned feature of Hertz’ work deeply influenced 
Wittgenstein, not only the author of the Tractatus but also the later 
Wittgenstein.10 In the Big Typescript he writes: 

In my way of doing philosophy, its whole aim is to give an expression 
such a form that certain disquietudes disappear. (Hertz) (BT, 421) 

In this section, I will argue that the view of modern mathematics as 
symbolic mathematics was essential in Wittgenstein’s approach to 
the problems in the discussion about the foundations of 
mathematics that begins in the late nineteenth century. 
Wittgenstein’s interest in mathematical symbolism is conceptually 
more rigorous and sensitive than that of Klein and his followers in 
that he laid more stress upon the operational aspects of the 
mathematical symbolism as human practices the various features of 
which we do not survey even though we master the practices. 
Wittgenstein made the following, somewhat excessive, statement 
about the role of symbolism in mathematics: “Let's remember that 
in mathematics, the signs themselves do mathematics, they don't 
describe it” (PR 186). Inspired by Hertz, Wittgenstein said in the 
Tractatus that “My fundamental idea is that the ‘logical constants’ do 
                                                           
10 This is argued in more detail in Stenlund 2012. 
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not represent”(T 4.0312). He would have said the same thing about 
the operations of arithmetic. 

It is the operational aspect of a symbol, its function in the 
calculus, its role in the manipulation and transformation of 
expressions, which constitutes it as a symbol. So a symbolism is not 
just a system of notation in the typographical or linguistic sense 
(which is why the symbolic view of mathematics is not formalism 
or nominalism, as these notions are used in the literature of analytic 
philosophy11). This means, of course, that the new mathematical 
concepts (such as, for instance, the concept of an arbitrary finite 
sequence), emerged together with the new algebraic symbolism. The 
concepts could come into existence as new precise notions only 
when the operational practices of the new symbolism were in place. 
Or, rather, the invention of new notions was the invention of the 
new operational practices of the algebraic symbolism. It is not as if 
the new notions were invented in advance “in the minds of 
mathematicians” and were then given expression and application 
using the new algebraic notation. That is the sort of idealism or 
mentalism that Wittgenstein is constantly questioning (PG, 40). 

Wittgenstein was questioning essentially the same mentalistic 
tendency in Frege when he wrote: 

In attacking the formalist conception of arithmetic, Frege says more or 
less this: these petty explanations of the signs are idle once we 
understand the signs. Understanding would be something like seeing a 
picture from which all the rules followed, or a picture that makes them 
all clear. But Frege does not seem to see that such a picture would 
itself be another sign, or a calculus to explain the written one to us. 

There is a tendency towards such a mentalism also in Klein’s and 
Unguru’s arguments that there were things that Greek 
mathematicians could not do because they did not have the 
concepts required. Klein and Unguru tend to argue as though there 
is always something mental, a mental cause, reason or ground, that 
makes people do what they do. But this idea is one of the most 
seductive sources of confusion. A lot of what we do, we do not do 
for any reason or ground, we just do as we have been trained to do. 

                                                           
11 Such as for instance in Weir 2011. 
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And our starting point is not ‘complete passivity’ but action. (As 
Goethe said: “Im Anfang war die Tat.”) 

One might say about many substantially new ways of thinking, 
new concepts, revolutionary changes in science, etc., which have 
emerged in the past, that they were once historically impossible, 
they were in sharp conflict with established notions and practices. 
But, nevertheless, they have happened, they have taken place, new 
operational practices developed, and subsequently history has been 
revised and rewritten. (A convincing criticism of the “argument 
from conceptual impossibility”, as it has appeared in the Unguru 
debate, is given in Netz (2004)). 

Wittgenstein emphasized the operational aspect of a symbolism, 
for instance, in the remark: 

In order to recognize the symbol in the sign we must consider the 
significant use. (TLP 3.326)12 

 

This can throw some light on Hertz’ idea that the signs and 
formulas of mathematical symbolism have “an intelligence of their 
own, that they are wiser than we are, wiser even than their 
discoverers, that we get more out of them than was originally put 
into them”. The ‘hidden intelligence of formulas’ is simply the 
manner in which a certain symbol or formula in its use is connected 
with so many other things in the arithmetical-algebraic system, 
which we don’t survey and foresee even if we do master its use. 
This ‘intelligence’ seems to be hidden only because we do not survey 
the possible uses of the formula even if we do master them in 
practice. This is true especially of the ‘moves of the game’ at the 
most basic operational level where there is complete agreement in 
action among mathematicians. These moves and features of the 
calculus therefore tend to be dismissed as ‘trivialities’ by 
mathematicians. But such trivialities are precisely the topic of 
Wittgenstein’s investigations about the foundations of 

                                                           
12  The original German version of this remark is ”Um das Symbol am Zeichen zu 
erkennen, muss man auf den sinnvollen Gebrauch achten.” I prefer Ogden’s translation 
of this remark. The Pears and McGuinness  translation, ”In order to recognize a symbol 
by its sign we must observe how it is used with a sense”, can be read as though the sign 
has already got a sense (in some sort of ’semantics’) prior to and independently of its use. 
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mathematics. This is why it is so difficult to understand what he is 
up to in some of his remarks on the foundations of mathematics. 
His topic, ‘the nature of mathematical symbolism’, is a non-topic 
for the mathematician. In Philosophical Grammar Wittgenstein 
remarks: “The philosopher only marks what the mathematician 
casually throws off about his activities” (369). 

Wittgenstein’s conception of mathematics, already from the 
beginning in the Tractatus, has much in common with what has 
been called symbolic mathematics. I think that this is true of the early 
and middle as well as the late Wittgenstein. I am inclined to say that 
for Wittgenstein, the most authentic form of mathematics in 
modern times is symbolic mathematics. 13  The symbolic view of 
mathematics offers us a perspective from which the unity of 
Wittgenstein’s philosophy of mathematics becomes apparent. 

A clear manifestation of Wittgenstein’s symbolic point of view 
is his claim that mathematical propositions are not ‘real’ 
propositions. According to Wittgenstein, they don’t have a 
descriptive content; they do not describe real states of affairs. 
Already in the Tractatus, mathematical propositions were called 
“pseudo-propositions”. And around the beginning of the 1940’s, 
he expressed a symbolic, non-ontological conception of 
mathematics as follows: 

Let us remember that in mathematics we are convinced of grammatical 
propositions; so the expression, the result, of our being convinced is 
that we accept a rule. 

Nothing is more likely than that the verbal expression of the result of 
a mathematical proof is calculated to delude us with a myth. 

I am trying to say something like this: even if the proved mathematical 
proposition seems to point to a reality outside itself, still it is only the 
expression of acceptance of a new measure (of reality). 

Thus we take the constructability (provability) of this symbol (that is, 
of the mathematical proposition) as a sign that we are to transform 
symbols in such and such a way. (RFM III, §§26-7) 

                                                           
13 Here I am using the word ’authentic’ in more or less the same sense as when we say that 
chemistry is an authentic natural science today, which alchemy is not. 
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This is something that cannot be made much sense of within a 
philosophical vocabulary based on the foundational status of 
mathematical logic, where all possible propositions are propositions 
in the ontological sense. They have a descriptive content and are 
about something in a ‘referential sense’. There is no place in the 
vocabulary for propositions in any other sense. The closest one can 
come to propositions in some non-ontological sense are 
propositions in the “nominalistic” sense that are merely about 
concrete signs, so-called ‘syntactical propositions’. One is forced to 
see Wittgenstein’s philosophy of mathematics as some superficial 
kind of formalist view in which mathematics has been deprived of 
all meaning. 

But as Wittgenstein said in the last quotation, if he is depriving 
mathematics of something in his critique of foundations, it is the 
(often misleading) prose that accompanies the mathematical calculi, 
and he is doing so in order to clarify the sense that mathematical 
notions have within the calculi. 

7. Symbolic arithmetic and the place-value system of 
numeration 

As mentioned, I am inclined to agree with Unguru (and his 
followers) that there was no proof by mathematical induction in 
ancient Greek mathematics. And I think that this circumstance is 
connected with the fact that in ancient Greek mathematics (by the 
time of Euclid and Archimedes), one did not have the full place-
value system for numbers, and 0 and 1 were not seen as a numbers. 
My suggestion is that the ideas of an arbitrary finite sequence and 
finite iteration of symbolic arithmetic, which are preconditions of 
proof by mathematical induction, had their origin in the emergence 
of the place-value system for numbers, which was referred to as the 
Arabic ciphers. Ortega y Gasset (1971: 52) reports that Leibniz, in 
his published correspondence, “called attention to the fact that 
Arabic ciphers have the advantage over Roman ciphers of 
expressing the “genesis” of a number and thereby of defining it” 
(cf. Leibniz, Matematische Schriften, vol. IV, 455ff.). 

Of particular importance was the decimal place-value system, 
also called the Hindu-Arabic numeration system (which was 
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imported to the west in the middle ages from Arabic sources and 
which subsequently became our normal way of writing numerals). 
Boyer (1968: 234) mentions that the Hindu mathematician 
Aryabhata, who was active in the fifth century, used a form of the 
decimal place-value system and in his writings we find the phrase: 

from place to place each is ten times the preceding. 

This phrase indicates the principle of the generation of the bases of 
the decimal place-value system, i.e. that the places are Units, Tens, 
Hundreds, Thousands, Ten Thousands, and so on. Here the phrase 
“and so on” is not an abbreviation for something that could be 
written out in full as when we say “A, B, C, and so on” for the 
sequence of letters of the alphabet. Aryabhata’s phrase suggests the 
idea of arbitrary finite iteration of an operation, in this case the 
operation of multiplying the base of the preceding place by ten. 

In the fully developed decimal place-value system for integers, a 
number is written as a finite sequence or string of digits taken from the 
list of digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Each digit has its unique place 
within the sequence as a whole. Since it is only single digits that 
occur as the terms of the sequence, there is no need to separate the 
places of the sequence by means of commas or some other device 
than juxtaposition. The total value of a numeral, as a sequence of 
digits, is calculated in this notation by additions and multiplications. 
For a two-digit numeral, 23 for instance, we have 

23 = (2 × 10) + (3 × 1). 

For a three-digit numeral, 517 for instance, we have 

517 = (5 × 100) + (1 × 10) + (7 × 1) 

and for a four-digit numeral, 3702 say, we have 

3702 = (3 × 1000) + (7 × 100) + (0 × 10) + (2 × 1) 

and so on. In the second example ‘1’ is used as a number, and in 
the last example ‘0’ is used as a number. The numbers ‘0’ and ‘1’, 
which were not numbers according to the Greek notion of number 
(arithmos), have clearly important functions in the decimal place-
value system. 
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Neither the late ancient Greeks nor the Hindu-Arabic 
mathematicians had the symbols I have used here for equality, 
addition and multiplication. Equations, as well as addition and 
multiplication were expressed in verbal language, in mathematical 
prose (to use Wittgenstein’s expression). The algebraic symbolism 
was not yet invented and the presentation was, as one says, 
rhetorical. And, of course, they did not have anything like the 
following algebraic symbol for the ‘general case’ of a number in the 
decimal place-value system: 

akak-1...a0 = ak10k  + ak-110k-1 + …+ a0100 

where 0 ≤ ai < 10 and ak ≠ 0. It is important to realize that this 
expression belongs to a symbolic system, an operational practice that 
did not exist in Greek or Hindu-Arabic mathematics, but only in 
modern mathematics. One essential symbolic feature of this 
equation is the use of the number-variable k. For a sufficiently large 
value of k, the numeral akak-1...a0 would not have a reading in 
ordinary language as my examples 23, 517 and 3702 all have. But 
even without this expression for the general case, it can be seen on 
the basis of examples, being particular cases, that this method of 
numeration stipulates no limit to the length of the expression for a 
number, i.e. to the number of places occurring in it. Each number 
is uniquely determined by the method for its construction in this 
system of numeration. 

With the place-value notation, one was in possession of the 
operational germ of the arithmetical idea of “and so on ad inf.” (if 
not the precise arithmetical concept, which required the 
arithmetical-algebraic symbolism), and also the operational germ of 
the ideas of finite iteration, and a finite sequence, and thereby also 
the germ of recursive proof or proof by mathematical induction. 
The word ‘infinity’ in the phrase “and so on ad inf.” here simply 
means that no finite sequence of digits is excluded as an expression 
for a number. It is not a feature of this system of notation for numbers that a 
number must be the number of things of some given multitude of things. A 
numeral in this system is a finite sequence of digits, which is a 
symbol for a number determined by the rules for calculating in the 
system. 
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It should be clear that the sense of number and finiteness 
suggested here is essentially different from the notion of number and 
finiteness of ancient Greek mathematics, since it was essential for 
the Greek concept of number (Arithmos), that a number is a number 
of things (units) of a multitude. 

The problem of so-called effective calculability discussed in 
connection with Church’s thesis in modern mathematical logic 
arises only for the notion of finiteness of modern symbolic 
mathematics, according to which a verbal expression such as “can 
be carried out in a finite number of steps” has a kind of non-literal, 
symbolic sense that did not exist for the Greeks. In ancient Greek 
logistics one was surely concerned very much with ‘practical 
effective calculation procedures’, but not with the calculability of 
the number-theoretic functions, that are discussed in connection with 
Church’s thesis. 

The features of the decimal place-value system of numeration I 
have stressed here points towards the symbolic notion of number 
and finiteness that begins to emerge in the work of Vieta, Stevin, 
Descartes and Wallis in the sixteenth and seventeenth centuries. Of 
particular importance in this respect was Stevin’s work.14 In 1585 
he published a pamphlet, De Thiende (“Art of Tens”) in which he 
used not only the decimal place-value system for integers, but also 
for decimal fractions. The Arabs and Chinese knew about decimal 
fractions earlier, but they were not used very much. Stevin 
compares Arab and Greek mathematics and his comparisons are 
often to the disadvantage of Greek mathematics. In Stevin’s view 
the most important historical roots of modern mathematics are not in 
Greek mathematics, but rather in Hindu-Arabic mathematics. 

Stevin’s pamphlet was very influential. He established the use of 
decimals in everyday mathematics, demonstrating the simplicity and 
advantage of the system. In the introduction to De Thiende he 
predicted that using decimal fractions in coinage, weights and 
measures, etc. would be one day universally accepted – a prediction 
that has come true to a great extent (even if it is not universally 
accepted). Stevin was very much what we would call an ‘applied 

                                                           
14 Simon Stevin (1548-1620) was a Flemish mathematician and military engineer. 
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mathematician’. As Klein puts it: “Stevin consciously breaks with 
the traditional forms of science and puts his ‘practical’ commercial, 
financial, and engineering experiences into the service of his 
‘theoretical’ preoccupation – as, conversely, his ‘theory’ is put to 
use in his ‘practical activity’” (Klein 1968: 186). Thus, for instance, 
he was the first to explain the tides using the attraction of the 
moon. In 1586 (three years before Galileo) he reported results of 
his own experiments to the effect that different weights fell a given 
distance in the same time. He wrote on astronomy and strongly 
defended the sun system of Copernicus. 

Unlike Vieta, who expressed himself very respectfully with 
regard to Greek mathematics, Stevin is very critical, and in 
particular about the weaknesses and mistakes he finds in Greek 
arithmetic. (An exception here is Archimedes, whose work Stevin 
admired.) The Greek view that the number ‘one’, or the ‘unit’, is 
not a number but rather the principle or arche (the beginning) of 
number, was according to Stevin one such mistake that he 
examines at great length and rejects. He also made a strong plea 
that all numbers such as square roots, irrational numbers, negative 
numbers etc. should be treated as numbers and not be 
distinguished as being ‘different in nature’. As van der Waerden 
puts it: “For Stevin, the real numbers formed a continuum. His 
general notion of real number was accepted, explicitly or tacitly, by 
all later scientists” (Van der Waerden 1985: 69). 

Klein’s detailed account of Stevin’s criticism of the Greek 
concept of number shows that the criticism is firmly based on the 
symbolic concept of number manifest in the decimal place-value 
system. 

8. Rabbi Levi ben Gerson: towards precise notions 

Looking at the historical development of mathematics, one can see 
that many mathematical concepts, methods, and techniques that 
were given precise mathematical sense in the symbolic systems that 
started to emerge in the seventeenth century had forerunners, but, 
of course, forerunners that were less precise by the standards of 
modern mathematics. This is also true of the method of using 
recursion in proofs. One mathematician who used what one would 
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be inclined to call, “proof by recursion” or “proof by induction”, 
quite systematically was Rabbi Levi ben Gerson. 15  He proved 
several theorems on the commutative and associative properties of 
multiplication and on permutations and combinations using 
recursive procedures. 

What should be noted first of all is that ben Gerson is using the 
decimal place-value system for numbers in computations – not 
however with the Hindu-Arabic notation, but with the first nine 
Hebrew letters for the digits 1, … , 9, and a circle for zero. 
Following Euclid he also represents numbers as line segments, i.e. 
AB for the line segment with endpoints A and B but, at the same 
time, arbitrary numbers are also represented by letters a, b, c, … In 
his proof of the theorem that the number of permutations of n 
elements is the product with the factors 1, 2, …, n, he states (what 
we call) the induction-step in prose as a theorem, and then he 
reformulates it as follows: 

Let the elements be a b c d e and their number be n and let m be the 
successor of n. Let the number of permutations of a b c d e be t. 
Adding one member to the set a b c d e, we obtain a b c d e f containing 
m elements. We say that the number of permutations of a b c d e f is 
equal to the product of t by m. 

It is clear, from the context, that Levi ben Gerson is not concerned 
with the particular case of a sequence of five numbers when he 
writes a b c d e (in the sense in which Euclid was indeed concerned 
with the particular case of a sequence of three prime numbers 
when he wrote “Let A, B and C be the assigned prime numbers” in 

                                                           
15 Levi ben Gerson was born in Languedoc in 1288, and was a Talmudist, philosopher, 
Biblical commentator, mathematician, astronomer, and physician. He wrote in Hebrew 
and completed several mathematical works. For instance, a commentary of several books 
of Euclid’s elements and a work called Maasei Hochev, the title of which is said to mean 
“the work of the calculator”. In the first (theoretical) part of the book, sixty-eight propositions 
are given general proofs, and the second part gives instructions for solving numerical 
problems in adding, subtracting, multiplying, but also in summing arithmetical and 
geometric series, and in combinations, permutations, and proportions, and in extraction 
of square and cube roots. In the Maasei Hochev, which was completed in 1321, we find 
repeated use of recursion in proofs. (My account of Levi ben Gerson and his work is 
based on Rabinovitch (1970)). 
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the beginning of his proof of the infinity of the primes). Ben 
Gerson tends to use the expression 

a b c d e 

as we would use an expression like 

a, b, c, d, …, e 

where the three dots is an abbreviation for the (n-5) members of 
the sequence that have not been written out (and ignoring that ‘e’ 
comes immediately after ‘d’ in the alphabet). So to some extent one 
might say that he had the germ of the notion of an arbitrary finite 
sequence. Not, however, as a notion belonging to a developed 
calculus of finite sequences. He does not seem to have had a clear 
notion of the form of a finite sequence, or an accurate symbolism 
for finite sequences. Neither did he have a satisfactory notion of 
the successor operation (by the standards of modern mathematics). 
When he says “let m be the successor of n”, he somehow thinks of 
it as an external relation between two given numbers, rather than as 
an operation on numbers which is given by its form n+1, where ‘n’ 
is a number variable. One reason for this may have been that he 
didn’t have symbols for addition (and multiplication) as operations. 
Addition, multiplication and equality were expressed in verbal 
language as in Greek mathematics. For this reason there is a great 
lack of perspicuity (surveyability) in ben Gerson’s statement of 
theorems and proofs. Rabinovitch points out that “it is quite 
difficult to read even relatively simple statements where every plus 
sign must be written out in words” (Rabinovitch 1970: 239). Here 
one could ask oneself, if this difficulty is due to a mere notational 
inconvenience or if it is rather a conceptual difficulty. To what 
extent is the perspicuity of a proof a part of its essence as a proof? 
One gets the impression that there is a tension in ben Gerson’s 
mathematics between the verbal-geometric perspicuity of Euclid, 
and the algebraic-symbolic perspicuity connected with the place-
value notation and the use of letters as variables. Consider for 
instance, Maasei Hoshev, Proposition 41: 

The square of the sum of the series of integers beginning from one up 
to a given integer is equal to the cube of the given integer plus the 
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square of the sum of the series of integers from one up to the 
predecessor of the given integer. 

In modern symbolism this proposition would be expressed: 

(∑ 𝑖

𝑛

1

)

2

= 𝑛3 + (∑ 𝑖

𝑛−1

1

)

2

 

 

Already when he reformulates the original proposition in the 
beginning of the proof, ben Gerson moves closer to the algebraic-
symbolic perspicuity by using letters for arbitrary numbers of a 
series. 

In ben Gerson’s proofs, in which we recognize a use of 
recursion and are inclined to call them proofs by induction, he 
often illustrates the proof with more cases than needed (in the 
proof), i.e. not only for the base n = 1, but also for n = 2, n = 3, n 
= 4. What he seems to want to illustrate here is how the result 
‘extends to infinity’ like a ladder or a spiral. In connection with the 
(recursive) proof of the theorems on the commutative and 
associative properties of multiplication, he says: 

In this manner of rising step by step, it is proved to infinity. 

So the method of rising step by step is ben Gerson’s name for what later 
has been called “the method of proof by mathematical induction”. 
Unlike the modern statements of the method it is not defined or 
made precise in some mathematical calculus or system. It is rather 
what one perhaps would call “an intuitive notion”. The name rising 
step by step is an ordinary language simile that captures a similarity 
between procedures in different proofs by induction.16 

So ben Gerson, unlike Euclid, was using letters a, b, c, … for 
arbitrary numbers, i.e. these letters are used as parameters. And his 
use of the letter n and m in his proof about permutations are 
number variables. The recursion in the proof (‘the induction step’) 
is carried out on these variables. He also seems to have had a 
notion of an arbitrary finite sequence, even if his symbolism is not 
satisfactory. I don’t think that it is farfetched to believe that his 

                                                           
16 According to Rabinovitch (1970: 245) ‘rising step by step’ is a translation of the Hebrew 
word Hadragah. A noun formed from the same root occurs in the Bible where it is taken 
to mean cliffs that appear like rising stairs. 
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familiarity with and use of the place-value system for numerals is 
one important thing that takes ben Gerson’s mathematics closer to 
modern symbolic mathematics. 

My point with the previous discussion of mathematical 
induction is not mainly historical, its point is rather to show what 
difference the symbolic point of view makes, by giving some 
examples of what sort of differences ‘make the difference’. 

Ben Gerson had a notion of mathematical induction, of finite 
sequences etc., which were not clear enough by our standards. 
They rest on vague analogies expressed in prose. But we are 
nevertheless inclined to call it a beginning of the development 
towards precise notions. However, we could also say that he had 
the beginning of a symbolism for these notions, but one that was 
not accurate. It may then seem as though we have two different 
kinds of inaccuracies, one having to do with content and the other 
with form. It is important to realize that this alleged difference is a 
mistaken idea. It is one and the same inaccuracy. When you have 
found an accurate symbolism for a notion, you have also become 
clear about the content of the notion. 

9. Ordinary verbal language and mathematical symbolism 

It was an important feature of Greek mathematics that the 
language of mathematics be continuous with and in proximity with 
ordinary verbal language. This is also argued by Klein (1968). It 
seems to be part of what Klein expresses as follows: 

Greek scientific arithmetic and logistic are founded on a “natural” 
attitude to everything countable as we meet it in daily life. This 
closeness to its “natural” basis is never betrayed in ancient science. 
(Klein 1968: 63) 

The closeness to its “natural” basis of everyday life is a feature of 
Greek mathematics that stands in sharp contrast to modern 
symbolic mathematics. There is a striking contrast in this respect 
even when we compare Greek science and modern science in 
general. In contemporary popular science there is a clear tendency 
to relinquish what “we meet in everyday life” and even to give 
oneself up to mythology. 
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Articulating modern mathematics in ordinary verbal language by 
assigning a place for mathematical propositions in the general 
category of propositions expressed by declarative sentences of 
natural language, have often resulted, not in “closeness to the 
natural attitude of everyday life”, but on the contrary in 
mythological ways of thinking such as for instance the ‘non-
linguistic’ Thoughts of Frege (which have their special Wirklichkeit as 
entities of “The Third Realm”),17 or the ontological mythologies of 
transfinite set theory of Cantor and Gödel. 

Modern logicians are more ontologically extravagant than 
Aristotle, who says that “The general propositions of mathematics 
are not about separate things which exist outside of and alongside 
the [geometric] magnitudes and numbers, but are just about these; 
not, however, insofar as they are such as to have a magnitude or to 
be divisible [into discrete units]” (Metaphysics M3, 1007b 17-20). The 
general propositions that Aristotle had in mind here are, for 
instance, the axioms or “the common notions” and the theorems 
of Eudoxus’ theory of proportions. 

The ontological views of Aristotle are a hard topic, however. He 
rejected Plato’s doctrine that numbers have an independent 
existence, and claimed instead that quantity, magnitude and number 
exist within the phenomena we perceive with our senses. The 
number three is not detached or separated from a multitude of 
three apples. But how can they then be objects of knowledge 
(episteme) in arithmetic as theoretical science? This question is what 
Aristotle answers by what has been called his “theory of 
abstraction”. 

Having said that quantity is inseparable from sensible things, it 
is somewhat surprising to find Aristotle saying that arithmetical 
science nevertheless studies the numbers as if they were separated from 
the objects of sense. Aristotle claims that “It [science] thinks the 
mathematical objects which are not separate as separate when it 

thinks them” (On the Soul, Γ 7, 431b 15f.). And this is accomplished 

                                                           
17 Frege (1979: 269), writes: ”There is no contradiction in supposing there to exist beings 
that can grasp the same thought as we do without needing to clad it in a form that can be 
perceived by the senses. But still, for us men there is this necessity.” 
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by abstraction in which “their separate mode of being arises from 
being “lifted off”, “drawn off”, “abstracted” (Klein 1968: 104). 
“The mathematician makes those things which arise from 
abstraction his study, for he views them after having drawn off all 
that is sensible …, and he leaves only the ‘how many?’ and 
continuous magnitude.”(Metaphysics K 3, 1061 a 28ff.) 

Abstraction is, however, not meant to be a sort of psychological 
procedure resulting in mathematical objects as mental 
constructions. 

Klein summarizes Aristotle’s ontology of mathematical objects 
as follows: 

If the reduction [in the abstraction process] goes so far that things are 
no longer regarded even as “mere bodies” but only as “items,” these 
things have been transformed into “neutral” monads. Just this 
“neutrality” of things which have withered away into mere countable 
“items” constitutes the “purity” of the “arithmetic” monads and turns 
them into the noetic material which underlies scientific study. (Klein 
1968: 105) 

So we can understand Klein’s statement that with Vieta’s symbolic 
approach in his Analytic Art “a new way of ‘understanding,’ 
inaccessible to ancient episteme is thus opened up”. 

Let us return to Klein’s claims that Vieta is the “inventor of 
modern mathematics” and that “modern mathematics is symbolic 
mathematics”. Klein’s claims are quite extensive and strong. 
Presumably, he does not want to say that modern mathematics has 
reached full realization and understanding of its symbolic nature. 
That this is not what he is saying seems to follow from his 
statement about the “ontological presuppositions [that] are left 
unclarified”, in modern mathematics and mathematical physics. 

Despite the transformation of mathematical thought that takes 
place with the work of Vieta, Stevin, Descartes and Wallis, it seems 
to me that there are important features of Greek non-symbolic 
ways of thinking that were passed on, rather unaffected by the 
symbolic transformation, to modern times through two very 
influential works, namely Aristotle’s logical doctrine and Euclid’s 
Elements (and many features, if not all, of Aristotle’s logical doctrine 
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are part of the philosophical context in Euclid’s Elements).18 The 
great influence of Euclid’s Elements, even in modern times, has 
made people compare its influence with that of the Bible. It has 
been said that no other book, except the Bible has as many 
translations, editions and commentaries as the Elements. Calinger 
points out about the Elements that “Its geometrical conception of 
mathematics greatly influenced the natural sciences – in medieval 
Arabic and Latin natural philosophy as well as in Isaac Newton’s 
Principia of 1687, which follows the format of the Elements. Its 
conceptions were basic to Kant’s Critique of Pure Reason, published 
in 1781” (Calinger 1999: 132-3). 

Klein would perhaps object that our understanding and reading 
of Euclid’s Elements since the seventeenth century is, nevertheless, 
imprinted by our loss of understanding of ancient Greek 
mathematical thinking. In Greek mathematics one had the 
conscious attitude that natural language referring to ordinary 
immediate experience is the basic linguistic framework. It has 
priority over other linguistic domains. Klein is certainly right that 
the reference to ordinary immediate experience as the basic source 
of fundamental mathematical concepts is something that gets lost, 
or is abandoned, in the transformation that takes place in the 
seventeenth century. It was this step in particular that made it 
possible for seventeenth century mathematics to transgress the 
boundary line between discrete and continuous quantity – a 
boundary line which we find in Aristotle and Euclid and their 
followers. But what is still not abandoned is the tendency to give 
meaning and significance to basic notions in mathematics and 
formal logic by translation or paraphrase into verbal language (to 
which I count what is often called “informal mathematical 
language”, or, in Wittgenstein’s words “mathematical prose”). 

Another thing that was transferred to modern times from the 
Aristotelian-Euclidian tradition is a philosophical attitude to formal 

                                                           
18 See Mancosu (1996: Ch. 1 and 4.) Mancosu argues convincingly that “the Aristotelian 
epistemological framework was pervasive in the seventeenth century and very influential 
indeed in later centuries” (Mancosu 1996: 92). By the “Aristotelian epistemological 
framework” Mancosu means primarily what we find in Aristotle’s Posterior Analytics. 
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logic, what I would like to call the foundational status of (formal) logic, 
which involves at least the following things: First, logic is 
concerned with judgments or propositions originally connected 
with the episteme of the Aristotelian ontological concept of a 
science. In this sense a science and its propositions are always about 
a certain subject matter that we have access to through a process of 
abstraction. Geometry and its propositions, for instance, are about 
continuous quantity, which we encounter in nature. This 
ontological conception of propositions is present in mathematics as 
much as in physics and biology. Secondly, to the foundational 
status of formal logic belongs also the idea that logic displays the 
form of judgments or propositions that is essential for their being 
true or false. This means in particular that a logically well-
articulated proposition carries its meaning or logical content by 
itself as a proposition, regardless of its context of use. 

What I want to argue is that the foundational status of logic, 
Aristotelian logic as well as modern formal logic, is intimately 
connected with the translation (or paraphrase) of the basic notions 
and rules of the logical calculi into natural language, and thus into a 
non-symbolic linguistic framework. The prose-translations, or the natural 
language readings, of the basic logical notions and formulas of 
formal logic tend to become ritualized and acquire a normative role 
for what constitutes the logical content of propositions. (In 
learning to formalize sentences of ordinary language using the 
propositional or the predicate calculus in contemporary 
introductory logic courses, students are initiated in these ritualistic 
reading techniques. To learn to disregard the context of use of 
sentences is an important part of learning these paraphrasing 
techniques.) Being articulated in ordinary language, it now appears 
as though the logical notions and rules are already present in 
ordinary language, as a hidden or concealed logical core of ordinary 
language that is made explicit through formalization. But the 
normativity of the prose-readings of logical notions and formulas 
was not a discovery about ordinary language; they were adapted to 
the formal rules of the logical calculi. And it is a part of this 
adaptation to disregard how the precise conceptual content of 
sentences depends upon the context of their use. 
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What I have said here about the role of verbal language may 
seem to be in conflict with Frege’s logical doctrine in one respect. 
The proper subject matter of logic, according to Frege, is not 
sentences of natural language but Thoughts, which are sometimes 
said to be ‘non-linguistic’ entities. For Frege it is Thoughts that are 
the subject matter of logic, that have a logical structure and stand in 
logical relations to one another. A Thought is about a determinate 
subject matter, and it says something true or false about that 
subject matter. – But how can a Thought say something about a 
subject matter if it is ‘non-linguistic’, if it is not articulated by signs 
of some sort? A determinate Thought has to be expressed as a 
sentence of a language, if it is to be a determinate thought at all.19 A 
Thought is really what Frege earlier called the Sinn of a sentence of 
language. 

The propositional calculus and the predicate calculus are calculi. 
It would be possible to present the systems of formal logic as pure 
calculi, in which the basic logical notions are deprived of all meaning 
that comes from the translation and paraphrase into natural 

language (i.e. the reading of ‘f(a)’ as ‘a has the property f’, ‘A’ as 

‘It is not the case that A’, ‘A & B’ as ‘A and B’, ‘xf(x)’ as ‘there 
exists an object x which has the property f’, etc.). In such a 
presentation of formal logic as a pure calculus, the basic logical 
operations are symbols (not just signs; remember that a symbol is 
determined by how we operate with a sign in the calculus). The 

different signs ‘’ and ‘~’, for instance, have been used for the same 
symbol. If we call that symbol ‘negation’, we must keep in mind that 
this word only signifies a symbol in the pure calculus; its sense does 

not come from a translation of the signs  ‘’ or ‘~’ as ‘not’ or as ‘it 
is not that case that’ in natural language. 

One could make the same point by saying that it would be 
possible to do with the systems of formal logic what Hilbert did 
with Euclidian geometry in his Grundlagen der Geometrie. Hilbert 
presented Euclidean geometry as a system in which the basic 
notions (e.g. ‘point’, ‘line’, ‘plane’, ‘between’, etc.) are deprived of 

                                                           
19 Frege states explicitly: “…that a thought of which we are conscious is connected in our 
mind with some sentence or other is for us men necessary” (Frege 1979: 269). 
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the meaning that comes from their use in informal geometrical 
language, (which is often called the ‘intuitive meaning’ of these 
words). So the only ‘meaning’ that the basic notions have in the 
system is the one that comes from the axioms and rules that define 
the system.20 By viewing Euclidian geometry as a pure calculus we 
would go further than Hilbert, who was still following the logical 
tradition in presenting the Euclidian geometric system as a theory 
about some ‘unspecified things’, external to the Euclidean calculus. 
According to Hilbert, he had presented geometry as a “pure 
mathematical science” in Grundlagen. By viewing the system as a 
pure calculus, the axioms get the role of rules for the operation 
with the basic notions and the signs of the calculus (which include 
geometric figures). 

In such a presentation of the logical systems as pure calculi, 
they are mathematical symbolisms, and they would deserve the 
name “symbolic logic”. Formal logic as symbolic logic in this sense 
has no longer the foundational status I mentioned before. The 
foundational claims disappear when the logical symbol’s 
connection with informal verbal language is cut off. They are just 
mathematical symbolisms side by side with other mathematical 
symbolisms without any exceptional position among the great 
variety of mathematical symbolic systems. 

In many purely mathematical results about logical systems, in 
so-called ‘metalogic’, only such features that belong to the system 
as a pure calculus or a mathematical symbolism are actually used. 
But in presentations of modern logical systems, one tends to state 
and present their mathematical properties as if the systems are 
inseparable from the translation of the signs into natural language 
(or mathematical prose), i.e. as if the logical operations must have 
the sense that comes from their translation into natural language. 
The reason for this is of course that one wants to adhere to the 

                                                           
20 Freudenthal (1962: 618) expressed the significance of Hilbert’s Grundlagen by saying that 
with Hilbert “[…] the bond with reality is cut. Geometry has become pure mathematics. 
The question whether and how to apply it to reality is the same in geometry as it is in 
other branches of mathematics. Axioms are not evident truths. They are not truths at all 
in the usual sense.” 
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foundational status of formal logic according to which the 
propositional calculus, for instance, is concerned with propositions 
in the ontological sense; they are understood as being about some 
sort of reality external to the calculi that make them true of false. 
But as a pure calculus the propositional calculus is only concerned 
with formulas, and their translation or reading as (forms of) English 
sentences is not part of the rules of the calculus. 

If the logical symbols’ connection with the natural language 
readings of them were cut off, one would also undermine the 
philosophically suggestive prose reading of most results in 
metalogic, i.e. results about ‘consistency’, ‘soundness’, 
‘completeness’, ‘incompleteness’, ‘decidability’, ‘undecidability’, etc. 
Confronted with the threat that the alleged philosophical 
significance of, for instance, famous results such as Gödel’s 
incompleteness theorems gets lost, logicians will hold on to the 
foundational status of formal logic, and to the ritualized prose 
readings of the logical symbols. 

The point of presenting a logical system as a pure calculus 
would be to show that the foundational status of formal logic, and 
the prose readings of the logical symbolism, is not a 
(mathematically) necessary feature of it. It shows how the 
ontological conception of propositions of mathematics is intimately 
connected with the translation of the logical operations into verbal 
language. So in a certain sense one might say that the non-
symbolic, ontological conception of mathematical propositions 
rests upon giving informal mathematical language a foundational 
significance.21 I think that this feature belongs to the heritage from 
the Greeks (Aristotle), and it stands in sharp contrast to the 
symbolic conception of mathematics. 

The most obvious way in which a branch of mathematical logic 
rests upon the standard readings, or translations into verbal 
language of the expressions and formulas of the predicate calculus 

                                                           
21 Here it is instructive to look at the debate between Hilbert and Frege (in Frege 1980). It 
is clear that Frege argues as if the presentation of a mathematical system (geometry as well 
as logic) as a pure calculus is impossible, because, according to Frege, the meaning of the 
basic notions that comes from the translation into informal language cannot be 
disregarded. 
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is in so-called ‘model-theoretic semantics’, where one starts out 
with a notion of ‘truth in a structure’. Such a structure has a 
domain of objects that are values of the bound variables. Via the 
natural language reading of formulas, a formula becomes a 
proposition about these objects that is true or false in the structure. 
If the objects are numbers, the formulas are translated into 
arithmetical propositions. It is clear that the ontological conception 
of arithmetic is built into this approach. One gets the impression 
that the standard verbal reading of the formulas of the predicate 
calculus was an important source of inspiration in the invention of 
model-theoretic semantics. 

Returning to Klein’s claim that the essence of modern 
mathematics is symbolic mathematics, it is clear that this claim does 
not apply to modern mathematical logic as it is understood and 
used in the discussion about the foundations of mathematics since 
the beginning of the twentieth century. And this foundational 
discussion has dominated (and thereby also delimited) the 
discussion in the philosophy of mathematics since then. All 
positions in this philosophical discussion (e.g. realism, Platonism, 
intuitionism, logicism, formalism, structuralism, etc.) take for 
granted the ontological conception of a proposition with roots in 
the logical tradition, and mathematics is seen as a kind of ‘natural 
science of mathematical objects’, whether they are platonic objects 
or mental constructions. 22  In the symbolic conception of 
mathematics, the ontological difficulties in this discussion do not 
arise at all. 

10. The end of the science of quantity 

The impact of the heritage from Euclid and the Aristotelian logical 
doctrine on modern mathematics is present not only in the modern 
logical tradition, but also in mainstream mathematics (e.g. 
mathematical analysis or Calculus) of the eighteenth and the 

                                                           
22 Exceptions here are Poincaré’s and the early Brouwer’s critique of the foundational 
status of formal logic. But this critique has been largely ignored in the foundational 
discussion. Modern intuitionists and constructivists (with the exception perhaps of Errett 
Bishop) have their own formal logic with their own ontological notion of proposition. 
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beginning of the nineteenth centuries. It seems to me that there is a 
deep tension at work between the two tendencies in mathematics 
during this time: on the one hand the Euclidean-Aristotelian 
heritage, with its ontological emphasis on geometry and 
‘continuous quantity’, and the symbolic conception with its 
emphasis on the formal and operational aspect of mathematics, on 
the other. The latter tendency manifests itself in the 18th century in 
the effort to make algebra the foundation of mathematical analysis 
(Lagrange). 

The former, ontological tendency was passed on by Newton, 
whose attitude to the tension between the two tendencies is 
somewhat puzzling. According to Guicciardini (2003: 75), 
Newton’s interest in mathematics began in 1664, when he read, 
inter alia, François Viète’s works, Descartes’s Geometrie, Oughtred’s 
Clavis mathematicae (1631) and Wallis’s Arithmetica Infinitorum (1656). 
From reading these works on “modern analysis” Newton learned 
analytic geometry, algebra, tangent problems, and series, and he 
made his own contributions to this field of research that was highly 
symbolic. However, according to Guicciardini, 

In the 1670s he was led to distance himself from this early highly 
analytical mathematical research. Newton began to criticize modern 
mathematicians. He stressed the mechanical character of modern 
algebraical methods […] By contrast, he characterized the “geometry 
of the Ancients” as simple, elegant, concise, adherent to the problem 
posed, and always interpretable in terms of existing objects. Needless 
to say, notwithstanding Newton’s rhetorical declaration of continuity 
between his methods and the methods of the “Ancients”, his 
geometrical dynamics is a wholly seventeenth-century affair. The 
reasons that induced this champion of analytics, series, infinitesimals, 
and algebra to spurn his analytical research are complex. They have to 
do with foundational worries about the nature of infinitesimal 
quantities […]. They also have to do with his dislike of Descartes, 
towards anything Cartesian […]. (Guicciardini 2003: 92) 

Newton passed on the “methods of the Ancients”, for instance, 
in the form of the ideas of absolute space, absolute time and 
absolute motion. Newton’s assertion of these ideas resulted in a 
quite violent fight between Newton (via his spokesman Clarke) and 
Leibniz, who was a great symbolic thinker and argued for the 
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relativity of place and motion. According to Hermann Weyl, “In 
this quarrel modern Physics sides entirely with Leibniz” (Weyl 
2009: 125). We also recall that it was Leibniz’, and not Newton’s 
version of the infinitesimal calculus that survived into the 20th 
century. Leibniz’ symbolic approach in mathematics and logic and 
its influence and success, is further support for the claim that the 
essence of modern mathematics is symbolic mathematics. 

Many 18th century mathematicians conceived themselves to be 
concerned with a subject matter that belonged to geometry seen as 
the science of physical space or to physics as concerned with 
continuous quantities such as lengths, weights, area, volume, time, 
mass, power, speed, etc. As Epple points out, “During the 18th and 
part of the 19th century, many scientists still agreed with the idea 
that mathematics was the ‘science of quantity’ […] It was self-
evident to mathematicians of the 18th century that the quantities 
dealt with in analysis were endowed with meaning in the natural 
and social world” (Epple 2003: 291-2). 

Many conceptual problems that were noted and discussed (but 
not solved) in 18th century mathematics had their source, it seems 
to me, in the deep tension between the mentioned two tendencies, 
i.e. between the view of numbers as quantities, and the symbolic 
view of numbers. There were problems about the nature of 
negative numbers: If numbers are quantities and 0 is nothing, how 
can there be quantities less than nothing? There were problems 
about infinitesimal magnitudes, differentials, the notion of limit, 
function, continuity, and one talked about the ‘mysteries’ of 
imaginary numbers. There were also problems concerning infinite 
divergent series. According to Jahnke “it was not self-evident that a 
formula obtained by algebraic expressions should be regarded as 
meaningless if it did not allow a numerical interpretation because a 
divergent series was involved” (Jahnke 2003: 108). This attitude to 
divergent series, that it should be possible (some day) to make 
sense of expressions and equations involving them, was according 
to Jahnke a typical attitude in 18th century analysis. 

That Gauss felt a need for increased rigor in this situation, is 
clear from the following description he gives of the situation in 
mathematics: 
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It is characteristic of mathematics of our modern times (contrary to 
antiquity) that our sign language gives us a lever that reduces the most 
complicated arguments to a certain mechanism. In this way science 
has gained infinitely in richness, but as the business is usually run, it 
has lost equally much in beauty and solidity. How often is this lever 
used only mechanically, although the authorization to do so in most 
cases implies certain tacit assumptions. I insist that by all applications 
of the calculus, by all applications of concepts one should remain 
conscious about the original conditions, and never without 
authorization consider the result of the mechanism as one’s property. 
However, the usual trend is that one claims that analysis has a general 
character […]. It is often like that in the case of divergent series. Series 
have a clear meaning when they converge; this clear meaning vanishes 
with this condition of convergence, and it changes nothing essential 
whether one uses the word sum or value. (Quoted in Lützen 2003: 
173) 

The image of mathematics as the science of quantity changes, 
however, profoundly in the late half of the 19th century. Epple 
writes about this change: 

[…] one may reasonably call this change the end of the paradigm of 
the science of the quantity. Several parallel developments initiated the 
departure from this paradigm. In great Britain, a tradition of 
symbolical algebra emerged […]. In the wake of other investigations 
(by Ernst Kummer, Hermann Grassmann, William Rowan Hamilton 
and many others), the notion of number was gradually extended far 
beyond its earlier limits. […] By constructing new mathematical 
entities that could no longer be subsumed under the traditional notion 
of quantity, these developments exploded the extension of this 
concept. (Epple 2003: 291) 

With the endeavor towards increased rigor in mathematics that 
begins with the work of Gauss, Cauchy, Weierstrass and others in 
the 19th century, the influence of the symbolic conception of 
mathematics is obvious and therewith also the endeavor towards a 
non-ontological outlook. Mathematical analysis was separated from 
geometry. Gaps were found in Euclid’s arguments, and in addition, 
as a consequence of the invention of alternative geometries, 
Euclid’s authority was questioned. It was felt that basic results in 
analysis (such as, for instance, the intermediate value theorem) 
should be given a firmer formal basis than being based on 
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geometric intuition. Geometric intuition was also challenged by the 
invention (by Weierstrass and others) of functions that were 
continuous but nowhere differentiable. 

In 18th century mathematics there was no sharp division 
between pure and applied mathematics. Most mathematicians also 
worked in theoretical physics. This fact reflected itself in the 
language of mathematics, in the prose of mathematics. Does a 
certain word such as, for instance, the word ‘quantity’ derive its 
meaning from its use in physics, or does it have its meaning from 
the way it is operated with in the mathematical calculus, i.e. does its 
mathematical sense coincide with its sense as a symbol of the 
calculus? It was only after the influence of the symbolic view of 
mathematics that this question could be raised, because an essential 
feature of the symbolic point of view was the logical separation of a 
symbolic system from its application to some subject-matter 
outside pure mathematics. This is why it is sometimes necessary to 
deprive words of their meaning in order to get clear about where 
the boundary between a symbolic mathematical system and its 
application goes. Even a word of ordinary language may have the 
role of a symbol in a calculus (such as, for instance, the words 
‘point’ and ‘line’ in Hilbert’s system in Grundlagen der Geometrie). 

In Weierstrass’ work on the arithmetization of analysis he is still 
using the word ‘quantity’, but it is clear that the sense of the word, 
as he is using it, is the sense it has as a symbol in the arithmetical 
calculus he is working with. Epple makes this point as follows: 
“Weierstrass continued to use the notion of quantity, but 
expressions like “arithmetical quantity” or “number quantity” made 
clear what he had in mind: a logical separation of his concepts from 
their more intuitive counterparts in geometry and physics” (Epple 
2003: 296). 

It is thus an important feature of the symbolic point of view to 
sharply separate a calculus or symbolic mathematical system, from 
its application to some independently given subject matter outside 
the system. This attitude towards the relation between pure and 
applied mathematics was in keeping with a more general tendency 
in 19th century mathematics, which Lützen describes as the 
existence of “A process of emancipation of mathematics from 
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science” and this process “added to the feeling that the foundations 
of analysis had to be revised. […] It became important to give 
mathematics, including analysis, a solid foundation of its own, 
independent of applications” (Lützen 2003: 155-6). 

It is interesting that one important motivation for the 
rigorization of analysis, was problems concerning the teaching of 
mathematics. According to Lützen, “Several mathematicians found 
themselves in an awkward situation when they had to teach the 
introduction to analysis, and therefore they decided to reform it” 
(Lützen 2003: 155). Lützen argues that this was the direct 
background for Cauchy’s and Weierstrass’s reforms and of 
Dedekind’s and Méray’s construction of the real numbers. It 
seemed most natural from a pedagogical point of view to introduce 
basic notions of analysis, such as the notion of infinitesimal 
magnitude, through their applications in physics. The ‘awkward 
situation’ was the impression that the correctness of the basic 
concepts of pure mathematics seemed to depend on their 
successful applications in physics – as if pure mathematics was at 
bottom not really pure. 

The process of “emancipation of mathematics from science” 
did manifest itself in the organization of higher education in 
mathematics in Germany in the 19th century. Lützen explains: 
“[…] high schools and universities rather than technical high 
schools became the centres of mathematical training and research. 
Combined with the neo-humanist movement, this led to the 
development of pure mathematics as an independent field” (Lützen 
2003: 155).23 

In Cauchy’s work on reforming analysis in his Cours d‘analyse it is 
clear that the symbolic point of view is present in an essential way. 
This is true in particular in Chapter VII where he introduces 
imaginary numbers. According to Bottazzini, “Cauchy took the 
ontological problem concerning the nature of imaginary numbers 
much more seriously than anyone before him. In the Cours d‘analyse 
                                                           
23 It seems clear to me that it was the symbolic point of view, with its algebraic methods 
and techniques, that made this development of mathematics into an independent field 
possible. This development can, for this reason, be said to support the claim that 
“modern mathematics is symbolic mathematics”. 
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he introduced them in a formal manner as “symbolic expressions” 
given by “any combination of algebraic signs that do not signify 
anything in themselves or to which one attributes a value different 
from that which it naturally has” (Bottazzini 2003: 217). Cauchy 
does not solve the “ontological problem” about imaginary numbers 
by giving a positive answer to the question of their “ontological 
nature”, but by making the ontological problem disappear in the 
light of a rigorous symbolic approach to the nature of imaginary 
numbers. And Cauchy’s approach required hard work. Bottazzini 
reports that “it took him no less than fifty-five pages to […] define 
algebraic operations on ‘expressions’ like α + β√-1 (α and β being 
real quantities) in a rigorous way and to establish their properties.” 
In Bottazzini’s judgement, “Chapter VII of the Cours can be 
considered one of the places where Cauchy displayed his concept 
of rigor best.” 

The symbolic algebra that was developed by George Peacock 
(1791-1858) and Augustus de Morgan (1806-1871) was, in a sense, 
an expanded symbolic approach. The algebraic symbolism was not 
just an arithmetic-algebraic symbolism. The symbols of algebra were 
no longer understood as representing necessarily numbers or 
magnitudes. In the chapter headed “On symbolic algebra” in de 
Morgan’s book Trigonometry and Double Algebra (1849), he writes: 

It is most important that the student should bear in mind that, with 
one exception, no word or sign of arithmetic or algebra has one atom 
of meaning throughout this chapter, the object of which is symbols, 
and their laws of combination, giving a symbolic algebra which may 
hereafter become the grammar of a hundred distinct significant 
algebras. If any one were to assert that + and − might mean reward 
and punishment, and A, B, C, etc., might stand for virtues and vices, 
the reader might believe him, or contradict him, as he pleases, but not 
out of this chapter. The one exception above noted, which has some 
share of meaning, is the sign = placed between two symbols as in A = 
B. It indicates that the two symbols have the same resulting meaning, 
by whatever steps attained. That A and B, if quantities, are the same 
amount of quantity; that if operations, they are of the same effect, etc. 

This is reminiscent of what Hilbert wrote to Frege in the so-called 
Frege-Hilbert controversy: 
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[I]t is surely obvious that every theory is only a scaffolding or schema 
of concepts together with their necessary relations to one another, and 
that the basic elements can be thought of in any way one likes. If in 
speaking of my points I think of some system of things, e.g. the 
system: love, law, chimney-sweep […] and then assume all my axioms 
as relations between these things, than my propositions, e.g. 
Pythagoras' theorem, are also valid for these things. In other words: 
any theory can always be applied to infinitely many systems of basic 
elements.24 

The system of symbolic algebra of de Morgan is not a theory about 
anything external to the system. It is a self-standing mathematical 
symbolism that can be applied to other independently existing 
subject matters. 

One of the most clear and distinct examples of the use of the 
symbolic point of view is the mathematician Johannes Thomae’s 
concept of “formal arithmetic” presented in the introduction of the 
second edition to his book Elementare Theorie der analytischen 
Functionen einer complexen Veränderlichen, published in 1898. As 
Thomae uses the word ‘formal’ it is essentially synonymous with 
‘symbolic’, as this word has been used in mathematics ever since 
Vieta. 

What makes Thomae’s clarification of formal or symbolic 
arithmetic exceptional is his use of the game of chess comparison 
in order to make clear the relevant notion of ‘form’ in formal 
arithmetic. With the game comparison he brings in the aspect of 
mathematics as activity, as operational practices (in opposition to 
mathematics as doctrines, laws, disciplines, theories), which is so 
important in the symbolic point of view. Thomae summarized his 
standpoint as follows: 

The formal conception of numbers sets itself more modest limitations 
than does the logical conception. It does not ask, what are and what 
shall the numbers be, but it asks, what does one need about numbers 
in arithmetic. For the formal conception, arithmetic is a game with 
signs which one may call empty; by this one wants to say that (in the 
game of calculation) they have no other content than that which has 
been attributed to them concerning their behaviour with respect to 

                                                           
24 Letter to Frege of December 29, 1899, as excerpted by Frege in Frege (1980, 40). 
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certain rules of combination (rules of the game). Similarly, a chess 
player uses his pieces, he attributes to them certain properties which 
condition their behaviour in the game, and the pieces themselves are 
only external signs for this behaviour. To be sure, there is an 
important difference between the game of chess and arithmetic. The 
rules of chess are arbitrary, the system of rules for arithmetic is such 
that by means of simple axioms the numbers can be related to intuitive 
manifolds, so that they are of essential service in the knowledge of 
nature. – The formal standpoint relieves us of all metaphysical 
difficulties, this is the benefit it offers us. (Quoted from Epple 2003: 
301) 

Thomae here begins by dissociating himself from the questions of 
the ontological nature of numbers on the grounds that answers to 
these questions are not needed in arithmetic. The ontological issues 
arise in discussions of the logical or philosophical foundation of 
arithmetic, but not in arithmetic as a mathematical practice. And 
don’t we have to agree with Thomae here? What would be an 
example of a mathematical problem in arithmetic, be it in elementary 
arithmetic or in advanced research arithmetic, for which the 
ontological nature of numbers (as discussed by philosophers) 
would make a difference? 

In arithmetic, seen as a game with signs, the signs are said to be, 
in one sense, empty of content. But in another sense they do have 
content. They don’t have a content in the game that comes from 
explanations or translations given in mathematical prose (using the 
words ‘quantity’ and ‘magnitude’). The arithmetical calculus, like 
the game of chess, is autonomous. But the signs do have content in the 
calculus, namely the ‘content’ attributed to them concerning their function and 
behavior with respect to the rules of the calculus. It is this content that 
constitutes the forms of formal (or symbolic) arithmetic. These 
forms are not features of the signs as objects of visual perception, 
they are rather forms of the use of signs. 

The words ‘sign’ and ‘symbol’ are often used as synonymous 
words. But here it is important to distinguish between a symbol as 
a form of use of a sign, and the ‘sign’ as the external and 
immediately perceivable mark for this form of use. The difference 
becomes clear in the game of chess comparison. By a chess piece 
we may mean a certain immediately perceivable visual object with a 
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certain color, shape and size that distinguishes it from other pieces 
in the game, but we also talk about a chess piece as an object with 
properties that condition its behavior in the game, i.e. as a piece with 
which you can make certain moves in the game but not others. The 
word ‘formal’ in Thomae’s “formal arithmetic” refers to the 
behavior of arithmetical ‘chess-pieces’ in the latter sense. 

Thomae was not the only mathematician who used the word 
‘formal’ in this way around the end of the 19th century. This raises 
of course the question if the symbolic view of mathematics 
coincides with formalism. It is difficult to give a short answer to 
this question since the word ‘formalism’ has often been used in a 
superficial, pejorative sense (e.g. by Brouwer and Frege), sometimes 
even as a caricature of the symbolic view of arithmetic, such as, for 
instance, when it is said that a formalist considers arithmetic or 
geometry “as games with empty signs”. Note that Thomae hesitates 
in the quotation above about using the word ‘empty’. The symbols 
of his formal arithmetic are not empty; they have a content 
determined by the forms of their use – not by possible applications 
of the system, or by semantical explanations. 

The mathematician Hermann Grassmann uses the words ‘form’ 
and ‘formal’ in  a  way  similar  to  Thomae’s  in  Grassman’s  book  
Die lineale Ausdehnungslehehre, published in 1844. The book begins 
with an introduction in which Grassmann gives an account of his 
conception of mathematics. He disassociates himself from the 
ontological conception of logic and mathematics by making a basic 
division of sciences in real (Reale) and formal (Formale): Thinking in 
the real sciences always takes place with respect to an 
independently existing subject matter outside thinking. In 
mathematics, being a formal science, the subject matter of thinking 
is posited by thinking itself and in a second act of thought it is 
made the object of study of mathematics as a formal science. The 
object of study of pure mathematics is forms of thought (Denkformen). 
Pure mathematics is Formenlehere (doctrine of forms), says 
Grassmann. Now, if thinking is linguistic in nature (which was also 
a common idea by this time); if thinking is operating with signs 
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(including pictures and figures), this would mean that the 
Denkformen of pure mathematics are forms of the use of signs.25 

Hilbert comes close to Grassmann’s idea when he says about 
the ‘formula game’ of his proof theory: 

This formula game is carried out according to certain definite rules, in 
which the technique of our thinking is expressed. These rules form a 
closed system that can be discovered and definitively stated. The 
fundamental idea of my proof theory is none other than to describe 
the activity of our understanding, to make a protocol of the rules 
according to which our thinking actually proceeds. (Hilbert 1927: 475) 

A very pertinent formulation of the symbolic view of mathematics 
was given by the French mathematician and philosopher Luis 
Couturat, in his book De l’infini mathématique (1896). Like Thomae, 
Couturat also uses he game of chess comparison: 

                                                           
25 With his “Ausdehnungslehre” (or extensive, or geometric algebra) Grassmann initiated 
a new research orientation in modern symbolic mathematics, which would get many 
applications in theoretical physics. The following historical account comes from the 
Wikipedia article, “Geometric Algebra”: “GA [geometric algebra] in the sense used in this 
article was not developed until 1844, when it was used in a systematic way to describe the 
geometrical properties and transformations of a space. In that year, Hermann Grassmann 
introduced the idea of a geometrical algebra in full generality as a certain calculus 
(analogous to the propositional calculus) that encoded all of the geometrical information 
of a space. Grassmann’s algebraic system could be applied to a number of different kinds 
of spaces, the chief among them being Euclidean space, affine space, and projective space. 
Following Grassmann, in 1878 William Kingdon Clifford examined Grassmann’s 
algebraic system alongside the quaternions of William Rowan Hamilton. From his point 
of view, the quaternions described certain transformations (which he called rotors), whereas 
Grassmann’s algebra described certain properties (or Strecken such as length, area, and 
volume). His contribution was to define a new product – the geometric product – on an 
existing Grassmann algebra, which realized the quaternions as living within that algebra. 
Subsequently Rudolf Lipschitz in 1886 generalized Clifford's interpretation of the 
quaternions and applied them to the geometry of rotations in n dimensions. Later these 
developments would lead other 20th-century mathematicians to formalize and explore the 
properties of the Clifford algebra. [...] Progress on the study of Clifford algebras quietly 
advanced through the twentieth century, although largely due to the work of abstract 
algebraists such as Hermann Weyl [Brauer and Weyl (1935)] and Claude Chevalley. […] In 
physics, geometric algebras have been revived as a "new" way to do classical mechanics 
and electromagnetism, together with more advanced topics such as quantum mechanics 
and gauge theory. David Hestenes [Hestenes, and Sobczyk, (1984)] reinterpreted the Pauli 
and Dirac matrices as vectors in ordinary space and space-time, respectively, and has been 
a primary contemporary advocate for the use of geometric algebra.” 
<https://en.wikipedia.org/wiki/Geometric_algebra#History> (Accessed July 8, 2015.) 
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A mathematician never defines magnitudes [or numbers] in 
themselves, as a philosopher would be tempted to do; he defines their 
equality, their sum and their product, and these definitions determine, 
or rather constitute, all the mathematical properties of magnitudes. In 
a yet more abstract and more formal manner he lays down symbols 
and at the same time prescribes the rules according to which they must 
be combined; these rules suffice to characterize these symbols and to 
give them a mathematical value. Briefly, he creates mathematical 
entities by means of arbitrary conventions, in the same way that the 
several chessmen are defined by the conventions which govern their 
moves and the relations between them. (Quoted in Bell 1937: 624) 

If formalism is a concern with form, and form is understood as in 
Thomae, Grassman, Couturat as forms of use of signs, as relating to 
the function and behavior of signs in a calculus, then clearly 
formalism is closely related to the symbolic view of mathematics. 
But in the philosophical discussion about formalism in the 20th 
century (a discussion which has been dominated by mathematical 
logic in its foundational status), formalism tends to be understood 
against the background of the ontological view in which 
mathematical propositions are taken to have a descriptive content – 
a mathematical system or theory is seen as a body of truth, or a 
body of knowledge about some independently existing subject 
matter. In this picture the aspect of mathematics as human activity, 
as operational practices, tends to disappear, and so does also the 
notion of a symbol as something else than a sign. A mathematical 
symbolism is often misunderstood as a system of notation with a 
naturalistic conception of signs and expressions. As a result, 
formalism becomes a kind of caricature of the symbolic view. It is 
‘formalism’ in that pejorative sense that Frege is attacking when he 
says: 

In order to produce it [an infinite series] we would need an infinitely 
long blackboard, an infinite supply of chalk, and an infinite length of 
time. We may be censured as too cruel for trying to crush so high a 
flight of the spirit by such a homely objection; but this is no answer. 
(Frege 1960: 219) 

Heine and Thomae made some less successful remarks that 
might seem to invite this objection. But it is doubtful if anyone has 
seriously held a formalist view of mathematics that would make 
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this remark into a fair objection. In Frege’s critique of the 
formalists, it is clear that he had an ontological conception of 
arithmetic that he never questions (Frege 1960: 182-233). He 
emphasizes arithmetic as a science (rather than as an activity or 
practice), and the subject matter of this science is the abstract 
objects that are the ‘reference’ of the number signs. It is, for Frege, 
on the basis of our knowledge of the sense and reference of the 
number signs that the rules of arithmetic are justified. 
Wittgenstein’s remark about Frege’s critique of the formalists 
quoted in section 5 seems to me very much to the point. 

There is also a notion of formalism that has been called 
“Hilbert’s formalism”, but this “formalism” is rather an unfair 
polemic picture of Hilbert’s views for which Brouwer was originally 
responsible. According to Georg Kreisel, “We note at once that 
there is no evidence in Hilbert’s writings of the kind of formalist 
view suggested by Brouwer when he called Hilbert’s approach 
“formalism” (Kreisel 1958: 346). This is to some extent an 
exaggeration. Hilbert never called himself a formalist, but some of 
his statements show that he was no doubt influenced by what was 
called the “formal approach” around the turn of the century. But 
Kreisel is certainly right in saying that the notion of “Hilbert’s 
formalism” is to a great extent a fabrication of Brouwer’s. It is not 
a very clear notion since Brouwer tends to put every view of 
mathematics that he dislikes or rejects under the label “formalism”. 
A more interesting view of Hilbert’s foundational work is given by 
Hermann Weil when he suggests a reading of Hilbert’s proof-
theoretical program with its “formula game” as being a symbolic 
construction (Weyl 1927: 136-41). 

Frege’s and Brouwer’s critique of formalism manifests a 
blindness towards the symbolic aspect of mathematics. This 
blindness is reinforced in the 1930’s through the notion of ‘logical 
syntax’ and the sharp division between syntax and semantics 
attached to it, which has become generally accepted and very 
influential in the literature of logic and analytic philosophy since the 
1930’s. The crucial feature of syntax in this sense (not to be 
confused with what Wittgenstein called ‘logical syntax’ in the 
Tractatus) is its naturalistic conception of language. The instigators 
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of this syntax terminology, Carnap, Gödel and Tarski, were very 
explicit about its naturalistic character. As already mentioned, 
Carnap said that “syntax, pure and descriptive, is nothing more 
than the mathematics and physics of language” (Carnap 1959: 284). 
This approach to language, in particular to the language of 
mathematics, blocks the aspect of language that the game of chess 
comparison opens up, such as for instance the difference between 
sign and symbol. That mathematics is at bottom activity, 
operational practices, forms of use of signs disappears as 
something inessential. 

Syntax, with the associated division between syntax and 
semantics, has of course been successful and influential for the 
invention of new mathematical theories of formal systems (where 
the words ‘form’ and ‘formal’ have the specific syntactical sense), 
theory of automata, applications in computer science, etc., but it is 
doubtful if this development has contributed to increased rigor of 
ordinary mathematics. Hasn’t logical semantics, including logical 
model theory, on the contrary cemented the old ontological view of 
mathematics? 

Let me finally mention one prominent mathematician who 
explicitly called his own conception of mathematics formalism, in a 
sense that comes close to the symbolic conception of mathematics. 
It is Felix Hausdorff, who was working in set theory and is 
considered as one of the founders of topology. His book Grundzüge 
der Mengenlehre, published in 1914 is often described as a 
groundbreaking work in modern mathematics. But in the first 
decade of the 20th century Hausdorff expressed (in manuscripts he 
never published) a view of set theory as a symbolic system without 
any ontology. It was a view in sharp contrast to Cantor’s 
philosophical understanding of set theory. Hausdorff’s work falls 
within the rigorization movement around the beginning of the 20th 
century. We will return to Hausdorff in the next section. 

The main point of this section has been to argue that an 
increased awareness and use of the symbolic conception of 
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mathematics, was one essential part of the rigorization of 
mathematics in the late 19th century.26 

11. Wittgenstein on calculus and mathematical ‘prose’ 

There are many examples of the prose/calculus distinction in the 
strict symbolic point of view that Wittgenstein held, at least in the 
middle period (cf. Stenlund 2012), when he spoke of mathematics 
as consisting of symbolic systems, games or calculi that are 
autonomous systems determined by rules for the operation and 
transformation of expressions. Again and again he warned about 
what he called the prose accompanying the calculus (the verbal readings in 
ordinary language of the signs and expressions of the calculus) – 
especially when this prose does not derive from some application 
of the calculus to something outside mathematics (PG, 324). 

If proximity to ordinary language was an essential feature of 
ancient Greek mathematics, Wittgenstein’s strict symbolic view of 
modern mathematics is diametrically opposed to this feature. His 
attitude seems to have been that modern mathematics, despite 
great progress in the last two centuries, has not yet found its true 
individuality or authenticity, but is still holding on to antiquated 
features of the Euclidian-Aristotelian tradition. 

He saw, in fact, prose accompanying the calculus as the main 
source of puzzles and confusion in the discussion of the 
foundations of modern mathematics. The following quotation from 
Philosophical Grammar is one of many passages where he makes this 
point: 

If you want to know what the expression “continuity of a function” 
means, look at the proof of continuity [of functions]; that will show 
what it proves. Don't look at the result as it is expressed in prose, or in 
the Russellian notation, which is simply a translation of the prose 
expression; but fix your attention on the calculation actually going on 
in the proof. The verbal expression of the allegedly proved 
proposition is in most cases misleading, because it conceals the real 
purport of the proof, which can be seen with full clarity only in the 
proof itself. (PG, 369-70) 

                                                           
26 More examples in support of this claim can be found in Epple (2003). 
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By the ‘Russelian notation’ he means the mathematical logic of 

Principia Mathematica, in which a formula such as (x)fx is translated 
and explained as the verbal sentence “There exists an object x 
which has the property f”, which we do understand as an English 
sentence (or a form of English sentences). But this is a very vague 
sense of understanding, since it is based only on the doctrine of 
sentence construction of English, and that doctrine says nothing, 
or very little, about the use of the sentence and the contexts of its 
use. Does it mean the same when the variable x ranges over a finite 
domain, as when any number can be a value of the variable? 
Through mathematical logic any proposition can be represented in 
the mathematical notation of modern logic, “and this makes us feel 
obliged to understand it. Although of course this method of writing 
is nothing but the translation of vague ordinary prose” (RFM, 299). 
So one important example of ‘prose accompanying the calculus’ is 
the ordinary language expressions used in the translation of the 
signs and formulas of the predicate calculus into verbal language. 

In his Notebooks Wittgenstein said that “My whole task consists 
in explaining the nature of the proposition” (NB, p. 39). But it was 
clear to Wittgenstein from the start that the propositions explained 
in the Tractatus do not include mathematical propositions. The 
propositions of the Tractatus express possible states of affairs about 
objects that are the substance of the world, but the statements of 
mathematics in the Tractatus do not express possible states of affairs 
about independently existing objects of a mathematical realm. A 
symbolic conception of arithmetic is present already in the 
Tractatus. The opposite view in which mathematical and non-
mathematical propositions are propositions in the same sense 
(which is the more or less established view in the branch 
‘mathematical logic and the foundations of mathematics’) is based 
on the similarities in the readings in “vague ordinary prose” of 
mathematical and non-mathematical statements. 

If persuasion was ranked above precision in Greek 
mathematics, it is clear that Wittgenstein wanted to reverse this 
ranking, provided that ‘precision’ means conceptual precision. This 
precision is not achieved by merely changing notation, i.e. using 
mathematical notation that is translated into “vague ordinary 
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prose”. Such a change may result rather in a deceitful feeling of 
persuasiveness about an achieved precision. 

One difficulty with understanding the last quoted passage is 
Wittgenstein’s use of the word ‘proof’. Many of Wittgenstein’s 
examples of proofs in RFM are really only calculations, while the 
established use of the word ‘proof’ among philosophers, logicians 
as well as professional mathematicians is still following the 
Aristotelian-Euclidian tradition, and then a proof tends to be 
contrasted with a calculation. (Poincaré calls calculation 
‘verification’ and contrasts verification with proof.) A proof in the 
Euclidian sense is essentially expressed in verbal language, in 
mathematical prose. It consists of a sequence or a pattern of 
propositions, related to one another by rules of inference. This 
conception of a proof was questioned in the Tractatus on the basis 
of the distinction between saying and showing, which was one of 
Wittgenstein’s tools in the Tractatus for clarifying the logical 
structure of language in general from a more strict symbolic point 
of view in which the notions of form and operation are essential. A 
form as Wittgenstein uses this word (even in his later philosophy), 
cannot be described: it can only be presented (PR, p. 208). A form is 
not a property of a substrate. So there is a problem here, for 
instance, with the form of ‘actually infinite sets’. How can there be 
actually infinite sets if their form cannot be presented? They must 
presuppose an “underlying imaginary symbolism” (PG, 470). The 
idea of mathematical entities outside any symbolism was 
incomprehensible to Wittgenstein’s symbolic view of mathematics. 
It would perhaps be comparable to the idea of (partly) human-like 
beings, having no bodies, like spirits or angles. 

It was a fundamental idea about arithmetic in the Tractatus that 
the logical forms of the propositions of language have an 
arithmetical structure. The logical forms are formal or internal 
properties and relations that show themselves in the symbolism, in 
how they are generated by the operations in the universal calculus 
of propositions in the Tractatus. 

The concept of an operation and a series generated by 
successive applications of an operation is the basis for the Tractatus’ 
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conception of arithmetic. A number is explained as a specific kind 
of symbol, namely as an exponent of an operation (TLP 6.021). 

In the change that takes place in Wittgenstein’s thinking in the 
1920’s, the universal calculus of the Tractatus loses its privileged 
position, and becomes one calculus among many others. But what 
does not change is his interest in mathematics as methods and 
techniques for operating with and transforming expressions and 
symbols. It is against this background that Wittgenstein prefers to 
talk about a mathematical system as a calculus, rather than as a 
theory about something, or a deductive system of propositions 
having descriptive contents. 

So when Wittgenstein is questioning the use of prose in 
mathematics as being a source of confusion, he is questioning the 
(non-symbolic) conception of proposition and proof with roots in 
the Aristotelian-Euclidian tradition. Many of the verbal expressions 
that belong to the prose accompanying the calculus have their 
origin in philosophy, not least in the Aristotelian-Euclidean 
tradition. 

In the following remark Wittgenstein suggests a method for 
separating calculus and (inessential) prose: 

In set theory what is calculus ought to be separated from what claims 
to be (and of course it cannot be) theory. The rules of the game have 
thus to be separated from inessential statements about the chessmen. 

Frege replaced those signs in Cantor’s alleged definitions of “greater”, 
“smaller”, “+”, “-”, etc., with new words, to show that here there 
wasn’t any real definition. In the same way, in all of mathematics one 
could replace the usual words, especially the word “infinite” and its 
cognates, with entirely new and hitherto meaningless expressions, in 
order to see what the calculus with these signs really achieves and what 
it doesn’t achieve. If the idea was widespread that chess gave us 
information about kings and castles, I would propose to give the 
pieces new shapes and different names, so as to demonstrate that 
everything belonging to chess has to be contained in the rules. (PG, 
468-9) 

What such an investigation of the word “infinite” would reveal, for 
instance, is that there is often a confusion of the mathematical 
sense of ‘infinite’ and the use of the word ‘infinite’ as a superlative 
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for something finite that strikes us as enormously large, as when we 
say “The number of trees along the road looks infinite”, or “The 
number of stars in the sky is infinite”. And then we are in danger of 
accepting the picture of an infinite sequence in mathematics as if it 
were an extremely long finite sequence, as if an infinite sequence in 
mathematics has an end, but one that it is ‘infinitely far away’. But 
the expression ‘infinitely far away’ is not a measure of a distance or 
length, it is a superlative we use about extremely large finite 
distances. That sense of ‘infinite’ does not achieve anything in the 
calculus of set theory. 

The separation of calculus and prose is an important part of 
Wittgenstein’s conceptual (or grammatical) investigation. And it is a 
difficult part since we do not survey and are not aware of the ways 
in which the use of ‘prose-expressions’ in a mathematical system 
affects our understanding of the system as a whole. 

In the late half of the 19th century it became more and more 
obvious that the formal deductive structure in Euclid’s elements 
was not really ‘formal’. Many arguments did depend on the prose 
meaning of words (such as for instance the word ‘between’). It was 
clear that the ‘formal deductive’ style in Euclid also had a tacit 
rhetorical purpose. 

This is what Hilbert’s axiomatization of geometry tried to 
correct. But Hilbert still followed the tradition in viewing pure 
geometry as a theory about something (about some ‘unspecified things’, 
as he expressed it), and he was led to the idea of the axioms as 
propositions defining the notions involved. Einstein saw the 
possibility of viewing geometry as a pure calculus, an autonomous 
system (in which the axioms are rules for the operation with signs 
and figures), and which, as a pure calculus, is not ‘about anything 
outside the calculus’, but which can be applied to things in nature, 
for instance, in the description of physical space.27 

One of the first mathematicians who clearly expressed the view 
of geometry as an autonomous system, independent of intuition or 
any empirical basis, was Felix Hausdorff. In a manuscript with the 

                                                           
27 Einstein’s theory of relativity was no doubt a source of inspiration for Wittgenstein in 
the middle period (RFM VI, § 28). See also Stenlund 2012: 149-152. 
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title Formalism from around 1904, he says about mathematics, and 
geometry in particular, that “The most important and fundamental 
task of modern mathematics has been to set itself free from this 
dependency [on intuition and empirical bases], to fight its way 
through from heteronomy to autonomy” (quoted in Corry 2006: 
148). Leo Corry summarizes Hausdorff’s view as follows: 

This autonomy, so fundamental for the new view of mathematics 
predicated by Hausdorff and widely adopted later on as a central image of 
twentieth century mathematics, was to be attained precisely by relying on 
the new conception of axiomatic systems embodied in GdG [Hilbert’s 
Grundlagen der Geometrie]. […] Pure mathematics, under this view, is a 
‘free’ and ‘autonomous’ discipline of symbols with no determined 
meaning. Once a specific meaning is accorded to them, we obtain 
‘applied’ mathematics. Intuition plays a very important heuristic and 
pedagogical role, but it is inexact, limited, misleading and changing, 
exactly the opposite of mathematics. (Corry 2006: 148-9)28 

In the beginning of the 1930’s Wittgenstein was, no doubt, 
influenced by this modernistic “central image of twentieth-century 
mathematics”. The “inexact, limited, misleading, and changing” 
intuition mentioned here comes to expression in what Wittgenstein 
calls ‘prose’. 

That being said, there is also a philosophically important 
difference between a professional mathematicians’ attitude (such as 
Hausdorff’s) to the new axiomatic method and Wittgenstein’s. 
Wittgenstein never saw it as his concern to express opinions about 
the final or ideal shape of geometry and arithmetic as disciplines of 
the science of mathematics, which was a natural concern for a 
professional mathematician for whom mathematics is research 
mathematics and higher mathematical education (while the rest is 
‘trivial mathematics’). For Wittgenstein, elementary mathematics, 
seen as established practices, methods and techniques of a wider 
circle of mathematical agents than the circle of professional 
mathematicians, is the rock bottom of mathematics. This is also a 

                                                           
28 It is interesting that Hilbert was less inclined to view his Grundlagen der Geometrie as the 
paradigm for a formalistic view of mathematics, of geometry in particular, than Einstein 
and Hausdorff and many others. As Corry makes clear, Hilbert often questioned the 
autonomy of geometry and claimed that geometric knowledge has an empirical basis. 
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reason why the word ‘calculus’ is more appropriate than the word 
‘discipline’ for Wittgenstein. 

This difference reflects Wittgenstein’s attitude to the idea of 
“the foundations of mathematics”. The foundations that are 
Wittgenstein’s concern are already there in the established 
mathematical activities and practices and the task is to get clear 
about it – and that reflection over elementary mathematical practice 
is not a mathematical task. The task is not to invent a foundation for 
mathematics through mathematical construction (such as Principia 
Mathematica or axiomatic set theory), or to propose a mathematical 
research program (such as the intuitionistic constructivization of 
mathematics or Hilbert’s proof-theory). The roots of the worries 
about the foundations of mathematics are according to 
Wittgenstein our lack of a clear view of the workings of the mathematical 
symbolism (caused partly by the role of prose in mathematics). And 
this lack of a clear view manifests itself in the problems, or puzzles 
(as he calls them) he is concerned with in his writings and lectures 
on the foundations of mathematics. This is one reason why 
Wittgenstein’s style of writing about the foundations of 
mathematics is so different from the normal styles of writing in this 
branch. In order to accentuate that he is not doing ‘foundations of 
mathematics’ in the mathematician’s sense, he points out in the 
first lecture of the series of lectures he gave on the foundations of 
mathematics in Cambridge in 1939 that “I am going to talk about 
the interpretation of mathematical symbols, but I will not give a 
new interpretation.” With regard to the puzzles he will deal with, he 
says that “all the puzzles I will discuss can be exemplified by the 
most elementary mathematics” (Diamond (ed.) 1976: 13-4). 

Wittgenstein is very clear about his attitude to the foundations 
of mathematics in the following remarks: 

What does mathematics need a foundation for? It no more needs one, 
I believe, than propositions about physical objects – or about sense 
impressions, need an analysis. What mathematical propositions stand in 
need of is a clarification of their grammar, just as do those other 
propositions. 
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The mathematical problems of what is called foundations are no more 
the foundation of mathematics for us than the painted rock is the 
support of a painted tower. (RFM, 378) 

This remark, and similar critical remarks about mathematical logic 
and the foundations of mathematics, may make it look as though 
Wittgenstein’s philosophy of mathematics is exclusively critical and 
negative. But the positive message is Wittgenstein’s symbolic 
conception of mathematics that he did not launch as a new branch 
of the foundations of mathematics, since it already existed within 
mathematics since many centuries and only needed to be clarified. 
The symbolic view is an important feature of the most progressive 
development of the mathematics created in the last three centuries 
up to and including the mathematics of quantum physics (as I shall 
argue in the last section). But it needs to be made clear since it is 
obscured by various other trends – such as mathematical logic in its 
foundational status. Wittgenstein could not help seeing that in the 
light of his symbolic conception, mathematical logic in that role 
stands out as a remnant from an antiquated ontological conception 
of mathematics of the past.29 

Wittgenstein tended, however, to exaggerate the calculus/prose 
distinction in the beginning of the thirties, when he was inclined to 
see mathematics as pure calculus.30 Maybe this exaggeration was an 
effect of how Wittgenstein was influenced by what Corry called “a 
central image of twentieth century mathematics” in the quotation 
given before. In any case, there is a change on this point in 
Wittgenstein’s thinking in the middle of the 30’s when a more 
anthropological point of view enters in connection with his work 
on rule following and as a result of criticism by Piero Sraffa. 
Wittgenstein realized that mathematics is not a sharply delimited 
field. The use of mathematical signs in applications outside 

                                                           
29  Wittgenstein says (RFM, 300), “‘Mathematical logic’ has completely deformed the 
thinking of mathematicians and of philosophers, by setting up a superficial interpretation 
of the forms of our everyday language as an analysis of the structures of facts. Of course 
in this it has only continued to build on the Aristotelian logic.” 
30 In a remark written in the beginning of the 30’s, he says: “Mathematics consists entirely 
of calculations. In mathematics everything is algorithm, and nothing is meaning, even when it 
doesn’t look like that because we seem to be using words to talk about mathematical things. 
Even these words are used to construct an algorithm” (PG, 468). 
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mathematics contributes to the meaning of mathematical signs.31 
But the calculus/prose distinction is still important in his later 
work, though in a less dogmatic sense. Similarities between 
statements in prose or in verbal language are still in many cases the 
source of false or misleading analogies. 

Let us look at one of Wittgenstein’s examples that shows how 
prose, or verbal language, may mislead us into (or may seem to 
justify) a belief in an ontological realm of mathematical objects, 
having independent existence. Consider the two sentences 

A human being has two eyes 

and 

A quadratic equation has two roots32. 

Due to the similarity in the verbal form of the two statements, it 
may be tempting so say: as the first proposition is about objects 
outside mathematics (eyes of a human being), so the second is 
about independently existing mathematical objects (numbers that 
are roots of a quadratic equation). And we would be led to an 
ontological realm of numbers. 

However, looking at the concept of the roots of equations we 
see that numbers that are roots of quadratic equations do not exist 
independently of mathematics, but only in the context of the 
arithmetical-algebraic symbolism. The roots of an algebraic 
equation of the form x2 + ax + b = 0 are given by two different 
algebraic expressions. (This holds despite the fact that any equation 
of the form (x – a)2 = 0, with a > 0 has, in a sense, only one root, 
but as the concept of the roots of a quadratic equation is 
determined in the algebraic symbolism, this means that the two 
roots of these quadratic equations happen to coincide.) 

It is the similarity in the verbal form of the statements of 
number outside and inside mathematics that makes it appear as 
though they were results of “applying mathematics” in the same 
sense. That is the false analogy. The decisive thing is that it is only 

                                                           
31 In RFM (p. 257, written in 1942) he says: “It is the use outside mathematics, and so the 
meaning of the signs, that makes the sign-game into mathematics.” 
32 Wittgenstein discusses a similar example in Diamond (ed.) 1976: 150. 
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the application of arithmetic to something independently given 
outside mathematics (such as eyes of people) that deserves to be 
called applied mathematics, and which is opposed to pure 
mathematics. The statement “A quadratic equation has two roots” 
is a statement of pure mathematics that is based on an algebraic 
proof, and not on counting objects in some realm outside the 
arithmetical-algebraic symbolism. 

12. Leibniz on blind thought and Hilbert’s ignorance of the 
use of signs 

There is a similarity between Wittgenstein and Leibniz, concerning 
the difference between calculus and prose. Recall the quotation 
above in which Wittgenstein says: 

In set theory what is calculus ought to be separated from what claims 
to be (and of course it cannot be) theory. The rules of the game have 
thus to be separated from inessential statements about the chessmen. 

He continues by suggesting a method for making the separation 
between the role of the word ‘infinite’ as a piece in the game or 
calculus of set theory, and its role as a prose expression with a 
‘linguistic meaning’ of its own in statements about the ‘chess-
pieces’, statements that purport to refer to something 
independently existing beyond the calculus, something that set 
theory is taken to be a ‘theory about’.33 

                                                           
33  The prose meaning of ‘infinite’ often invites a (false) analogy between an infinite 
sequence and an extremely large finite sequence – as if an extremely long sequence of 
numbers of the form 1, 2, 3, …, n is ‘closer to’ or ‘more similar to’ the sequence of all 
natural numbers  than a short finite sequence of this form. It is on the basis of this 
analogy that it seems to make sense to conceive of the set of natural numbers as an 
extension (in which the generation of numbers by iteration of the successor operation “has 
been completed”, i.e. carried out to the end which the sequence of naturel numbers does 
not have!). It seems to me that the normal meaning (for most logicians) of a proposition 
beginning with a universal quantifier which ranges over the set of natural numbers N, is 
to think of N as an extension. 
  The mathematician Niels Henrik Abel was very dissatisfied with the theory of infinite 
series of his times. He complained that “One applies all operations to infinite series as 
though they were finite, but is that permissible? Hardly. – Where is it proved that one gets 
the differential of an infinite series by differentiating each term?” (Quoted in Lützen 2003: 
177). 
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Leibniz was concerned with a similar problem with his 
infinitesimal calculus when he was criticized for not making clear 
what the infinitesimal calculus ‘is about’. By not distinguishing 
calculus and mathematical prose the critics were misled by the 
prose into seeing the infinitesimal calculus as a theory about 
something, such as infinitesimal magnitudes. Leibniz reacted to 
criticisms of the differential calculus for having an unclear 
foundation, and for the uncertain status and nature of the infinite 
and the infinitesimals by saying that “it is unnecessary to make 
mathematical analysis depend on metaphysical controversies or to 
make sure that there are lines in nature which are infinitely small in 
a rigorous sense in contrast to our ordinary lines, or as a result, that 
there are lines infinitely greater than our ordinary ones, yet with 
ends” (Loemker 1969: 542-3). As Krämer points out (1996: 85): 
“Leibniz emphasized that the inner coherence of his calculus does 
not depend on the metaphysical dispute how to interpret the 
differential symbolism. To calculate correctly does not presuppose 
an answer to the question of whether an infinitesimal magnitude 
exists as an actual or as a potential infinity.” Herman Weyl makes a 
similar point: “many of the Leibnizian statements sound as if his 
view of the infinitely small is that it […] cannot be given a 
reasonable contentual interpretation, yet that nonetheless all things 
stand as if it [the infinitely small] did actually exist. All that matters 
for the mathematicians is that it fits into the calculus of signs 
without contradiction” (Weyl 1927: 139).34 

One of Leibniz’ great achievements was his clarification of the 
notion of calculus on the basis of the distinction he made between 
two kinds of thinking: symbolic or blind thought on the one hand, and 
intuitive thought on the other. ‘Intuitive thoughts’ are what Leibniz 
often refers to as ideas. Starting out from limitations of human 
mental capacities, he explains the distinction as follows: 

…especially in longer analysis, we do not intuit the entire nature of the 
subject matter at once but make use of signs instead of things […]. 
Thus when I think of a chiliogon, or a polygon of a thousand equal 
sides, I do not always consider the nature of a side and of equality and 

                                                           
34 Ishiguro (1990: Ch V), gives a very penetrating account of Leibniz’s notion of the 
infinitesimal. 
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of a thousand (or the cube of ten), but I use these words, whose 
meaning appears obscurely and imperfectly to the mind, in place of 
ideas which I have of them, because I remember that I know the 
meaning of the words but that their interpretation is not necessary for 
the present judgment. Such thinking I usually call blind or symbolic; we 
use it in algebra and in arithmetic, and indeed almost everywhere. 
When a concept is very complex, we certainly cannot think 
simultaneously of all the concepts which compose it. But when this is 
possible, or at least insofar as it is possible, I call the knowledge 
intuitive. (Loemker 1969: 292) 

Here Leibniz goes against Descartes, who emphasized the intuition 
of clear and distinct ideas at every step in thought and held that 
thinking of a certain complex concept presupposes permanent 
intuitive awareness of the concepts that compose it. 

If intuition is ‘the mind’s eye’ we understand Leibniz’ choice of 
the expression ‘blind thought’ for symbolic thought in which 
intuition is not involved. Symbolic thought occurs, as Leibniz says, 
‘almost everywhere’ but the paradigm cases are the calculi of 
arithmetic and algebra, such as operating in the decimal place-value 
system for numbers. This wide use of symbolic thought is similar 
to Wittgenstein’s wide use of the notion of calculus to bring out 
features of language, but which nevertheless has the calculi of 
arithmetic and algebra as paradigm cases. A crucial thing about a 
calculus, and therefore of symbolic thought, is that its structural 
features, the forms of its signs and expressions, are tied to the 
expressions as objects of visual perception, and not to a verbal 
reading of the expressions as in the rhetorical practices of Ancient 
mathematics. 

One might think that Leibniz notion of intuition and intuitive 
thought corresponds to the content that comes to expression in 
what Wittgenstein calls prose, or mathematical prose. But that is 
not the case. There is, as far as I can see, no counterpart in 
Wittgenstein thinking to Leibniz’s ‘intuition’. It is a notion that 
seems to have its source in Leibniz’s metaphysical idealism. But as 
Esquisabel has pointed out, Leibniz suggests two different kinds of 
blind thought (Esquisabel 2012). In addition to the blind thought 
that takes the operational practices of arithmetic and algebra as 
paradigm cases and which Esquisabel calls symbolic blind thought, 
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Leibniz recognizes certain contexts in which the signs are words or 
sentences of ordinary language and where there is non-intuitive 
thinking that involves a certain comprehension of linguistic 
meanings of words and sentences, although it is often confused, 
vague or even erratic. Esquisabel calls this kind of blind thought 
verbal blind thought and he recognizes its occurrence as follows: 

This is the case fundamentally when we appeal to ordinary language in 
everyday life in our social interchanges or in our meditation. In such 
situations we face another form of blind thought that is characterized 
by the fact that we have a vague and confused comprehension of the 
meanings of words or sentences, with no possibility of better 
specifying that meaning. Thus, our mind moves so to say in a milieu of 
diffused linguistic comprehension in which meaning cannot be 
established univocally and firmly. (Esquisabel 2012: 16) 

Leibniz mentions this verbal blind thought in connection with 
problems arising in the interpretation of biblical texts when 
questions about the truth of faith arise, questions that may be 
subjected to a variety of interpretations that can be mutually 
incompatible. Meanings in verbal blind thought are loaded with a high 
degree of confusion and uncertainty, and for this reason –
according to Leibniz – it involves a severe danger for philosophical 
thinking, namely the threat of talking equivocally and 
metaphorically about things, about which we have no genuine 
understanding. 

Wittgenstein recognized much the same dangers in the use of 
prose, in particular in mathematical prose, so it seems to me that 
the distinction between symbolic blind thought and verbal blind thought in 
Leibniz’s philosophy, is a clear forerunner of the middle period 
Wittgenstein’s distinction between calculus and prose. 

Let us take a look at important features of the algebraic 
symbolism, in order to get closer to the roots of the calculus/prose 
distinction. As Krämer points out, through the algebraic symbolism 
of Vieta, a new kind of writing was introduced, a kind of writing that 
speaks to the eyes and not to the ears (Krämer 1996: 84). The 
essential feature of the algebraic signs is their visual, graphical form. 
This form is not given through verbal descriptions, definitions or 
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‘rules of formation’; the form of a sign is basically given by being 
shown or presented. 

For alphabetical writing, on the contrary, there is a transition to 
spoken language. Alphabetic writing is a sort of representation in 
visual space of temporal sequences of spoken language. Every letter 
has a characteristic sound. Learning to read alphabetic text involves 
learning not just what the letters look like but also how they sound. 
Every word has a pronunciation and each sentence has a reading. 
Understanding alphabetic writing, you have to be able to read the 
written text aloud, and hear what is expressed in it. 

The letters A, B, C,… are used by Vieta in his algebraic 
symbolism as variables or parameters, but the characteristic sounds 
of these letters are completely irrelevant in the algebraic symbolism 
of his analytical art. 

But even algebraic signs have verbal readings or readings in 
mathematical prose, these readings are, however, in general 
irrelevant and often incomprehensible if they are not given together 
with the algebraic sign and a stipulation of the form: “An 
expression of this form is what we will call so and so”. It is the 
visual form of the algebraic signs that give sense through 
stipulation to these verbal readings, and not the other way around. 
Consider for instance the sign 

a2 

with the verbal reading “a raised to 2”. There is nothing in this 
verbal phrase, taken by itself that tells us that this sign must look 
exactly like this: a2. So the meaning of the phrase “a raised to 2” is 
determined by the stipulation that this graphical form is what we 
shall call “a raised to 2”. The point of having the verbal readings of 
algebraic signs is that it facilitates communication. A teacher who is 
demonstrating how solve a quadratic equation on the blackboard 
for his students, will use this verbal reading of the algebraic 
symbols in addressing the students. But if this teacher had solved 
the same equation for himself on paper, he would not have said a 
word but just calculated. 

So let me summarize: Algebraic writing is not based upon a 
transition from written to spoken language or conversely (as in the 
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case of alphabetic writing). It speaks directly to the eye. The 
algebraic sign is a visual, graphical structure that is immediately 
accessible to the human eye. The form of a sign is given by it being 
shown or presented. 

Signs in this sense was, it seems to me, what Leibniz meant by 
characters. Leibniz talks about the signs of his calculi as characters. 
He says, for instance: 

The human mind cannot advance far in reasoning without resorting to 
characters. And characters, when they are adequately chosen, have this 
marvellous property: they leave so to say visible marks of our thoughts 
on paper, and [thus] we provide ourselves with the means of being 
infallible. (Quoted in Esquisabel 2012: 23) 

Another notion is that of an algebraic symbol (which must not be 
confused with an algebraic sign). The important thing here is that 
the algebraic symbolism is an operative symbolism. A symbol is 
determined by how we operate with the sign for it. Or, as Wittgenstein 
expresses his concept of a symbol in the Tractatus: 

In order to recognize the symbol in the sign we must consider the 
significant use. (TLP 3.326) 

Consider for instance the rule 

a2  = a × a 

which is one of the rules that determines the sign ‘a2’as a symbol. 
By this rule it is connected to the rules for multiplication. 

When the rules for operating with the signs in a symbolism are 
stated only in terms of signs as visual structures (characters) without 
any use of prose, then we have what Leibniz called a calculus. 
Leibniz says: 

Calculus is […] operation by means of characters, which takes place 
not only in quantity, but also in all other reasoning. (Quoted in 
Esquisabel 2012: 23) 

Typical examples of calculi in this sense, according to Leibniz, are 
operating with ciphers in the algorithms for addition, 
multiplication, subtraction, division in the decimal place-value 
system. 
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Leibniz had the idea of a comprehensive system, a Universal 
Characteristic in which verbal language has been made superfluous. 
In that system truth has been reduced to correctness of calculation. 

We do not believe in the possibility of such a universal calculus, 
but not so much because of the incompleteness and undecidability 
results in modern mathematical logic, but rather because, as times 
have changed, we can’t share Leibniz’s optimistic rationalism. 

It would be a mistake to speak about the signs of the algebraic 
and arithmetical symbolisms (including Leibniz’s characters) as 
“syntactical objects” as the word “syntax” has come to be used in 
the wake of Gödel, Tarski and Carnap, when syntax is contrasted 
with semantics and a new technical sense of meta-mathematics, 
formalization, formal system, etc., was introduced. In this 
conception, which was based on a naturalistic conception of 
language, syntactical objects are mathematical entities. To transform the 
signs in the arithmetical symbolism, for instance, into syntactical 
objects is the first step in the formalization of arithmetic. It is to give 
a mathematical representation of the signs (that are given as visual 
structures) using the mathematical concept of a finite sequence in 
stating “rules of formation” for numerical signs and expressions. It 
is important to realize that formalization in this sense is applied 
mathematics. As I have pointed out before, Carnap was well aware of 
this and he states this naturalistic view of language explicitly in his 
book The Logical Syntax of Language. Through formalization in this 
sense, a mathematical structure is built into the syntax of a formal 
system, and it is this structure that is used in the so-called 
arithmetization of syntax that was an important method in Gödel’s 
work. Even if a syntactical object is a finite object in the 
mathematical sense, it may be too complex to be a structure in 
visual space that can be perceived by the human eye. 

Hilbert’s notions of formulas, proofs etc. were different. He 
states explicitly in explaining his proof theory that “A proof is an 
array that must be given as such to our perceptual intuition” 
(Hilbert 1927: 465). 

The syntactical objects, in Carnap’s sense, are not “prior to 
mathematical thought” (to use an expression of Hilbert’s), they are 
the result of mathematical construction. 
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It is interesting to compare what I have said about algebraic 
signs as visual structures perceivable by the human eye, with what 
Hilbert says about what he calls die finite Einstellung. This is what he 
says in an English translation of the article “Die Grundlagen der 
Mathematik” from 1927: 

as a condition for the use of the logical inferences and the 
performance of logical operations, something must already be given to 
us in our faculty of representation [in der Vorstellung], certain extra-
logical concrete objects that are intuitively [anschaulich] present as 
immediate experience prior to all thought. If logical inference is to be 
reliable, it must be possible to survey these objects completely in all 
their parts, and the fact that they occur, that they differ from one 
another, and that they follow each other, or are concatenated, is 
immediately given intuitively […]. And in mathematics, in particular, what 
we consider is the concrete signs themselves, whose shape […] is 
immediately clear and recognizable. (Hilbert 1927: 464-5; emphasis 
added) 

Hilbert repeats this statement of die finite Einstellung, in many of his 
papers on the foundations of mathematics from the beginning of 
the 1920’s to the beginning of the 1930’s. And he repeats it using 
almost the same words, which indicates that it was a deep and 
strong conviction. Hilbert, unlike Carnap, did not have a 
naturalistic conception of signs, but rather a sort of 
phenomenological view of signs. 

A characteristic feature of Hilbert’s philosophical statement of 
die finite Einstellung, is that he is standing outside mathematics when 
he states it. He is looking at mathematical sign language from the 
outside, and he explicitly calls his perspective a philosophical view. He 
does not use mathematical symbolism or concepts in what he says 
about signs, for instance. 

However, when he passes over to the proof theoretical work, he 
places himself inside mathematics. But then die finite Einstellung 
turns into something else than the philosophical perspective it was 
from the beginning. It turns into a mathematical concept within a 
classification of methods of proof inside mathematics. He 
distinguishes between finite and transfinite methods, for instance. 
Most of the features he ascribes to the “concrete signs that are 
intuitively present as immediate experience” have somehow 
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disappeared, since he is now concerned with mathematical objects 
and methods. For instance, the ‘part-whole structure’ of the 
immediately recognizable objects (signs) of die finite Einstellung is not 
the same structure as the imposed part-whole structure of the 
numerical terms and formulas in formalized arithmetic. It is no 
longer clear how the details in his statement of die finite Einstellung 
influences the proof-theoretical work. Even Hilbert’s distinction 
between real and ideal mathematical statements seems to be based 
on a mathematical conception of finitary proof and reasoning. It is 
not clear how the notion of the ‘concretely finite’ of die finite 
Einstellung, (which is bounded by human perceptual capacities), can 
justify Hilbert’s finitary mathematical methods of proof, which 
according to Hilbert “includes recursion and intuitive induction for 
finite existing totalities” (Hilbert 1923: 1139). Hilbert points out, 
for instance, that “The assertion that all the objects of a finite 
existing surveyable totality possess a particular property is logically 
equivalent to a conjunction of several individual assertions” 
(Hilbert 1922: 1122). But what shall we say if such a totality is so 
large that it is not surveyable, but still finite? Well, then we are no 
longer talking about the ‘concretely finite’, but about mathematical 
finitude. 

It seems to me that this kind of gap between the ‘concretely 
finite’ of die finite Einstellung and the normal mathematical notion of 
the finite manifests a serious difficulty in Hilbert’s program. The 
difficulty, it seems to me, is due to Hilbert’s underrating of the 
conceptual importance of the operative symbolism of arithmetic. Note 
that in his statement of die finite Einstellung he talks about signs but 
never about the use of signs. 

In Hilbert’s paper (1922: 1122), he ends the statement of the 
finite Einstellung by saying: “In the beginning was the sign.” And 
then he goes on to “explain the numbers”, by saying: “The sign 1 is 
a number. A sign that begins with 1 and ends with 1, and such that 
in between + always follows 1 and 1 always follows + is likewise a 
number.” 

What Hilbert should have said is this: 

In the beginning was the use of signs. 
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A written mark or figure becomes a sign when it has got a use as a 
sign. If Hilbert had said “In the beginning was the use of signs”, he 
could have continued: The use of signs creates symbols such as the 
numbers, and the successor operation. The symbol 1 is a number. 
The symbol ‘+ 1’ is the successor operation: if n is a number, then 
n+1 is (the next) number in the series of natural numbers. 

The German philosopher Alois Müller criticized Hilbert for his 
talk about signs having no meaning (Müller 1923). As a result of 
this criticism, Hilbert changed his terminology. He uses the word 
numeral (Ziffer) or number sign instead of sign. So now the 
“explanation of numbers” reads: the numeral 1 is a number, and 
numerals of the form 1+1, 1+1+1, etc. are numbers. This was, it 
seems to me, an unfortunate decision since we certainly want to 
distinguish between numerals and numbers, as we must distinguish 
between signs and symbols. Hilbert’s decision manifests ignorance 
of the operational aspect of the arithmetical symbolism, where 
numbers and other symbols are constituted. 

That Hilbert wanted to limit himself to ‘surveyable’ totalities in 
talking about all objects of a totality, is connected with the concrete 
sense of finitude of die finite Einstellung, which is subject to the 
human capacity to survey a totality of objects. But as a 
mathematician, Hilbert (and other proof-theorists) tended to find 
this restriction ‘troublesome’. The mathematics of proof-theory 
runs smoother without it. As Mancosu has pointed out, there is a 
clear change of emphasis concerning the sense of the word ‘finite’ 
in Hilbert’s writings during the 1920’s (Mancosu 1998: 168). The 
mathematical sense of the word becomes more important, even if 
Hilbert never abandoned the philosophical view of die finite 
Einstellung. I think that there is a conflict here in Hilbert’s thinking 
that was never resolved. Hilbert wanted the two senses of ‘finite’ to 
be to a great extent one and the same, but they are essentially 
different. One of them has to do with the human capacity to 
perceive finite structures in visual space, the other is the pure 
mathematical notion of finitude (of the calculus of finite sets and 
sequences, for instance). It is even misleading to think of the latter 
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notion of finitude as an extension of the former. They are different 
concepts.35 

What is the reason for Hilbert’s ignorance of the use of signs, of 
the rules for the use of signs in the operative symbolism in 
arithmetic? I think it has to do with his vision of the essence of 
mathematics as captured in formalized mathematics, which is a 
vision of something static and completed, as for instance when he 
says “mathematics proper, or mathematics in the strict sense 
becomes a stock of provable formulae” (Hilbert 1922: 1131). 
Mathematics is seen as consisting essentially of the proved 
theorems, something completed, and not of the activities and on-
going operational practices where mathematical problems are 
solved. 

In formalized mathematics the theorems are formulas with 
readings in mathematical prose and Hilbert seems to have had very 
great confidence in the understanding that is based on these prose-
readings. I see this confidence as a part of his attitude to accept 
classical mathematics essentially as it stands (except that its 
consistency has to be established). And his confidence in the 
(passive) mathematical prose tends to push aside the activity aspect 
of mathematics, and to block seeing the importance of the 
operative symbolism. 

It is interesting that Leibniz main motivation for his symbolic 
approach is connected with the limitations of the human mind that 
we find in Hilbert’s finite Einstellung, such as for instance the limited 
human capacity to survey a totality of objects. Leibniz says, 

For example, we often grasp a number, however large, all at once in a 
kind of blind thought, namely when we read ciphers on paper which not 
even the age of Methusela would suffice to count explicitly. (Loemker 
1969: 76)36 

I suppose that what Leibniz has in mind here is, for instance, a 
symbol or number such as 

                                                           
35 For a more detailed discussion of this topic see Stenlund (2012b). 
36 Leibniz is joking here. According to the Hebrew Bible, Methusela is purported to be the 
oldest person to ever live. Extra-biblical tradition maintains that he died at the age of 969. 
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1248 

In understanding this number (in the decimal place-value system), 
we have (in general) no intuitive awareness of the individual 
numbers that we have to go through in counting from 1 up to this 
number. The thought of the number 1248 is what Leibniz calls a 
symbolic or blind thought. 

In another context Leibniz says: 

Thus, nobody could carry out in his mind reasonings that are 
extremely lengthy, had not certain signs been invented, that is, names 
by means of which the overwhelming amount of things could be 
embraced in such an abbreviated way that this multitude can be gone 
through. Such a thing would be impossible if, by suppressing names or 
other signs like these, definitions were to be used in place of that 
defined. And I use to call such thoughts blind. Nothing is more 
necessary or frequent for man than them. (Esquisabel 2012: 14; 
translation slightly amended) 

Let us consider the following equation: 

1040  × 1030  = 1070 

We see immediately that this is a true equation, thanks to the use of 
the symbol for multiplication and the exponential notation that 
gives us the symbols 1040, 1030 and 1070. We can recognize the truth 
of the equation on the basis of this symbolism alone, while 
remaining ‘blind’ to what logicians call the “canonical form” of this 
equation, obtained by replacing these symbols, and the 
multiplication symbol by their definitions until we have an equation 
between extremely long sequences of the form (using Hilbert’s 
notation): 

1+1+1+1+1+ … +1. 

Could this equation be written down in its entirety on paper? – 
After all, Archimedes estimated the number of grains of sand that 
would fill up the (Classical Greek) Universe, to about 1063, which is 
a much smaller number than 1070. 
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13. Contemporary physics and symbolic mathematics 

I will end this paper by relating questions I have discussed to issues 
that were absolutely central to much philosophy done in 
Wittgenstein’s time, namely, the difficulties of interpretation that 
arose with the invention of relativity theory and quantum physics in 
the 20th century. More precisely, I will look at what two physicists 
said about the conceptual problems confronting contemporary 
physics. This will shed further light on how Wittgenstein’s 
philosophy of mathematics was related to issues central to the exact 
sciences of the day. 

The great changes of scientific thinking that came about with 
the invention of relativity theory and quantum physics led to the 
“downfall of classical physics and to strange new conceptions of 
the physical world”, as the physicist A.S. Eddington expressed it in 
his Gifford Lectures in 1927 (Eddington 1931). What is of interest 
for us about this development is that it also led to a new awareness 
of the importance of symbolism in science and in particular of the 
fruitfulness of symbolic mathematics. 

Eddington writes: 

One of the greatest changes of physics between the nineteenth century 
and the present day has been the change in our idea of scientific 
explanation. It was the boast of the Victorian physicist that he would 
not claim to understand a thing until he could make a model of it; and 
by a model he meant some 

thing constructed of levers, geared wheels, squirts, or other appliances 
familiar to an engineer. Nature in building the universe was supposed 
to be dependent on just the same kind of resources as any human 
mechanic. […] 

Nowadays we do not encourage the engineer to build the world for us 
out of his material, but we turn to the mathematician to build it out of 
his material. […] We are dealing in physics with a symbolic world, and we can 
scarcely avoid employing the mathematician who is the professional wielder of 
symbols. (Eddington 1931: 209; emphases added) 

A prominent mathematician who made significant contributions to 
modern physics in this spirit was Hermann Weyl. He was a 
scientist, a mathematician at heart, but he had extensive 
philosophical interests, which affected his work as a mathematician 
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and his contributions to contemporary theoretical physics. He was 
a student of Hilbert’s, and from about 1912 to the publication of 
his book Das Kontinuum in 1918, Weyl was influenced by Poincaré 
and by Husserl.37 

In 1919 Weyl met L.E.J. Brouwer and was deeply influenced by 
his philosophical ideas in general and in particular by his 
mathematical intuitionism with its emphasis on intuitively 
cognizable truths. Weyl later described himself as having been a 
disciple of Brouwer by this time. However, in the beginning of the 
1920’s, Weyl became more and more doubtful about the sufficiency 
of the intuitionistic as well as the pure phenomenological approach 
for the understanding of modern science. In 1927 he wrote: “With 
Brouwer, mathematics gains the highest intuitive clarity; his 
doctrine is idealism in mathematics thought to the end. But, full of 
pain, the mathematician sees the greatest part of his towering 
theories dissolve in fog” Weyl 1927: 136). By this time Weyl had 
become convinced that contemporary ‘creative science’ must 
transcend what is intuitively and phenomenologically given. He 
seems to have accepted that Brouwer’s intuitionism, as well as pure 
phenomenology, are incapable of accounting for contemporary 
theoretical physics. In 1932, Weyl wrote: 

The scientific formulation of the objective conception of the world 
takes place in physics, which employs mathematics as a means of 
construction. But the situation that prevails in theoretical physics in no 
way corresponds to Brouwer’s ideal of a science, to his postulate that 
every proposition shall have its individual meaning, and that this meaning shall be 
capable of intuitive display. On the contrary, the propositions and laws of 
physics taken individually do not have a content which can be verified 
experimentally; it is only the theoretical system as a whole which can 
be confronted with experience. What is achieved is not intuitive 
cognition of an individual or general state of facts, and a description 
which faithfully portrays the given conditions, but theoretical, purely 
symbolical construction of the world. (Weyl 2009: 78; emphases 
added) 

                                                           
37  For an up-to-date survey of Weil’s foundational thinking and its relation to 
phenomenology in the period 1910-1930, see Mancosu and Ryckman 2002. 
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It seems to me that much the same criticism applies to Husserl’s 
idea of a science, since Husserl too presupposed that every 
proposition shall have its individual meaning. Later Weyl sums up 
the main point by saying, 

in the natural sciences we are in contact with a sphere which is 
impervious to intuitive evidence; here cognition necessarily becomes 
symbolical construction. Hence we need no longer demand that when 
mathematics is taken into the process of theoretical construction in 
physics it should be possible to set apart the mathematical element as a 
special domain in which all judgments are intuitively certain; from this 
higher viewpoint which makes the whole of science appear as one 
unit, I consider Hilbert to be right. (Weyl 2009: 80) 

Symbolical construction, in which the symbols, in themselves, do not 
always signify anything accessible as intuitive experience, is 
henceforth Weyl’s mathematical approach in theoretical physics. 
The great importance he attached to this new symbolic orientation 
is clear from the following statement: “[…] only in mathematics 
and physics, as far as I can see, has symbolic-theoretical 
construction acquired sufficient solidity to be convincing for 
everybody whose mind I open to these sciences” (Weyl 2009: 82). 

He describes essential features of this constructive symbolic 
cognition as follows: 

Upon that which is given, certain reactions are performed by which 
the given is in general brought together with other elements capable of 
being varied arbitrarily. […] By the introduction of symbols, the 
judgments are split up; and a part of the manipulation is made 
independent of the given and its duration by being shifted on to the 
representing symbols which are time resisting and simultaneously 
serve the purpose of preservation and communication. Thereby the 
unrestricted handling of notions arises in counterpoint to their 
application, ideas in a relatively independent manner confront reality. 
[…] Symbols are not produced simply “according to demand” 
wherever they correspond to actual occurrences, but they are 
embedded into an ordered manifold of possibilities created by free 
construction and open towards infinity. (Weyl 2009: 118-9)38 

                                                           
38 What Weyl means by this will hopefully be clearer by the examples I present throughout 
this section, especially the example with the introduction of an arithmetical symbolism for 
counting sequences of sounds at the end of this section. 
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In these, and similar statements of Weyl’s, it seems to me that he is 
on the verge of saying that most (if not all) of the propositions of 
the theoretical, symbolic systems of quantum physics, are not really 
propositions about anything external to the system, but rather rules or laws 
of a calculus whose “manipulation is made independent of the 
given”. When it is said that this system as a whole depicts a 
“transcendent symbolic world”, I think that it must not be taken as 
an ontological or metaphysical statement, but rather as an epitome 
of the successful applications of the system as a whole; its function, 
significance and importance in the practices of modern physics.39  

Weyl illustrates the mentioned “splitting up of judgments” by 
using a simple example from the propositional calculus (Weyl 2009: 
187). He points out that in formalized mathematics formulas of the 
form A → B have replaced the statement that A implies B or that B 
follows from A. The split consists in the fact that after the 
replacement, the sign ‘→’ stands for a symbol that is manipulated 
only according to the formal rules of the system, and not on the 
basis of the intuitive reading or ‘prose-translation’ of the symbol as 
‘implies’ or ‘follows’. Weyl summarizes his point by saying: “[...] in 
principle we must sharply distinguish between the symbol → 
occurring within the system, and such words as “follows” which we 
use to make meaningful communications about the game”. (We 
note in passing that Weyl’s “split” has strong similarities with 
Wittgenstein’s “split” between calculus and prose.) Weyl goes on to 
make the following claim about the importance of this distinction: 

[...] a split of essentially the same nature has been brought about by 
quantum physics: namely the split between the physical phenomenon 
under observation on the one hand and the measurement on the 
other. The first can be adequately described only by the quantum-
mechanical symbolism; about the latter we can and must talk in the 

                                                           
39 Scholz (2006, 306) says that “Weyl tried, as much as he could, to distance himself from 
classical metaphysics, in particular its reference to the kind of transcendent reality that was 
stipulated there. He definitely refused, however, to cut the bonds to all kinds of 
metaphysics. He rather substituted strong references to symbolical and material practices 
in place of the old realism.” I agree with Scholz, but I would not want to call Weyl’s 
reference to “symbolical and material practices” an expression of a bond to “a kind of 
metaphysics”. 
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intuitive terms of classical physics. […] In quantum theory we learn 
that measuring one quantity sometimes utterly destroys the possibility 
of measuring another quantity. This is a matter of principle and not of 
human deficiency. 

The principle referred to here is Heisenberg’s uncertainty principle, 
which asserts a fundamental limit to the precision with which 
certain pairs of physical properties of a particle, such as position 
and momentum, can be known simultaneously. As a consequence 
of the uncertainty principle there is an inconsistency of classical 
logic with the facts of measurement of variables in quantum 
mechanics, such as the position and momentum of a particle. The 
classical distributive law of propositional logic 

(A and (B or C)) ↔ ((A and B) or (A and C)) 

fails. If p is a particle moving to the right on a line and A is the 
proposition that “p moves to the right” and B is “p is in the 
interval [-1, 1]” and C is “p is not in the interval [-1, 1]”, then (B or 
C) is true, and so is (A and (B or C)). But (A and B) and (A and C) 
are both false since they assert tighter restrictions on simultaneous 
values of position and momentum than is allowed by the 
uncertainty principle. The ‘uncertainty’ of the uncertainty principle 
is not due to inaccuracy of the methods and instruments of 
measurement; it arises from the wave nature in the quantum 
mechanical description of nature, which is why it is a matter of 
principle. 

The failure of the distributive law has been taken to mean that a 
radical revision of classical logic would be necessary in quantum 
physics. In his early papers on quantum logic, Hilary Putnam 
exclaimed that “The world has a non-classical logic!” (Putnam 2012: 173) 

But doesn’t Putnam here presuppose that the ‘symbolic world’ 
of quantum physics is a kind of copy or representation of physical 
reality, rather than a symbol, a complex symbolical construction? It 
is not clear to me that the symbolic world of Eddington and Weyl has 
a logical structure that would somehow have an independent 
existence. If the symbolic world “has a logic”, this logic must be a 
symbolic construction as much as everything else in the symbolic 
world of quantum physics. 
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Let us look at another of Weyl’s examples of the limitations of 
the use of “the intuitive prose of classical physics”. He presents an 
algebraic-arithmetical equation indicating the propagation of a 
plane monochromatic light wave (Weyl 2009: 107). The equation 
contains several parameters, such as the wave frequency ν, the 
intensity a2, time and space coordinates t, x, y, z, etc. To speak only 
in the formal language of the algebraic-arithmetical equation, 
avoiding all terms that refer to ideas of space and sense qualities 
would be too pedantic according to Weyl. But, nevertheless, he 
insists that “in principle, one must hold to the position that nothing 
of the intuitive contents and essence of these terms enters into the 
systematic symbolical construction of the physical world!” 

Weyl raised the question of whether this two-level view of 
language is only a feature belonging to an early stage of the 
development of quantum physics, a feature that will be overcome 
in its future development. But Weyl is inclined to answer this 
question negatively. He says that in quantum physics, 

one has to distinguish sharply between the hidden physical process 
which can only be represented by the symbolism of quantum physics, 
although it may be referred to by such words as electron, proton, 
quantum of action, etc., and the actual observation and measurement. 
According to Bohr, we have to talk about the latter in the intuitively 
comprehensible language of classical physics; or ought we better say: 
in the language of everyday life? […] It may very well be that we can 
never dispense with our natural understanding of the world and the 
language in which it is expressed, perhaps a little purified and 
enlightened by classical physics, and that the symbolism of quantum 
physics will never be able to offer a substitute for it. In this case we 
would have here a true dialectic which cannot be resolved/lifted by 
any historical development[.] (Weyl 1948: 340-1; quoted in Scholz 
2006: 302-3) 

As Scholz points out, in Weyl’s mature views on this issue a 
reference to 

‘concrete activities of people’ comes into play and allows us to adopt 
even an ‘antropic’ perspective with respect to mathematical 
knowledge. […] we find that mathematical symbols are understood 
within the context of a communicative practice that has strong 
parallels to material practices, in the way that symbols are handled, and 
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with multiple links to the other scientific and technical activities. 
(Scholz 2006: 305) 

Here one comes to think of the ‘anthropological’ element that 
enters in Wittgenstein’s work on rule-following in the middle of the 
30’s, as it comes to expression, for instance, in the following 
remarks from Wittgenstein’s Remarks on the Foundations of 
Mathematics, 

Following a rule is a human activity. (331) 

The agreement of people in calculation is not an agreement in 
opinions or convictions. (332) 

Language, I should like to say, relates to a way of living. (335) 

The words “language”, “proposition”, “order”, “rule”, “calculation”, 
“experiment”, “following a rule”, relate to a technique, a custom. (346) 

[W]hat the correct following of a rule consists in cannot be described 
more closely than by describing the learning of ‘proceeding according 
to the rule.’ And this description is an everyday one, like that of 
cooking or sewing, for example. It presupposes as much as these. It 
distinguishes one thing from another, and so it informs a human being 
who is ignorant of something particular. (392) 

I know of no evidence, however, for Weyl’s having been influenced 
by Wittgenstein’s work in the 1930’s and 40’s. Weyl had read the 
Tractatus. It is listed as one of the references in Weyl’s article “Über 
den Symbolismus der Mathematik und Mathematischen Physik” 
(1953), and Weyl makes some short comments on a few remarks in 
the Tractatus. But there is nothing in this article that would show 
the Tractatus to have been an important influence on Weyl. 

The similarities we find in Weyl’s and Wittgenstein’s early 
symbolic views of mathematics, are rather due to their common 
source of inspiration: Heinrich Hertz. 

When he raises the question of the origin and nature of the 
procedure of symbolic construction, Weyl refers to Heinrich Hertz 
(Weyl 2009, 107-8). He quotes at length the crucial passage from 
the beginning of the introduction to Hertz’ Principles of Mechanics, 
where Hertz explains that we create symbols of external objects in 
such a way that “logically necessary consequences of the symbols 
are always the symbols of caused consequences of the symbolized 
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objects”. It is a crucial feature of Hertz’ symbolic view that the 
symbols, being our concepts of objects in nature, are not assumed 
to have anything further in common with the objects except this 
requirement. As Hertz puts it: “We neither know, nor do we have 
means to find out whether our representations of the objects have 
anything in common with the objects themselves except that one 
fundamental relation alone.” As pointed out before, it was this 
feature of Hertz’ work that Ernst Cassirer had in mind when he 
wrote that “Heinrich Hertz is the first modern scientist to have 
effected a decisive turn from the copy theory of physical 
knowledge to a purely symbolic theory” (Cassirer 1957: 20).40 

 It may seem as though symbolic mathematics in Weyl’s 
conception only refers to very advanced mathematics, such as the 
mathematics used in modern theoretical physics. But the essence of 
introducing a symbolism, according to Weyl, is a transition from 
description to construction, by means of the “splitting up of judgments” 
mentioned before, and such transition occurs already at the most 
elementary levels of mathematics as in the creation of the sequence 
of natural numbers 1, 2, 3, … According to Weyl, we have here a 
typical example of the construction of a symbolism. 

Weyl asks us to imagine hearing two sequences of sounds, one 
after the other (Weyl 2009: 117).41 In reproducing the sounds of the 
first sequence by recollection when listening to the second we may 
ascertain that the second sequence projects beyond the first. “This 
time there were more sounds than the first time.” Here we have a 
description, which can be understood without any reference to symbols. But, 
we may proceed in a different way. While listening to the sounds 
we put strokes on paper one after the other, one stroke for each 
sound. We may thus get the number-symbols | | | | called 4 for 
the first sequence, and | | | | | | called 6 for the second one, and 

now we ascertain from the symbols: 6 ˃ 4. In doing this, the two 

                                                           
40  It is sometimes suggested that Weyl’s main source of inspiration for his symbolic 
approach was not so much Hertz but rather Cassirer’s “Philosophy of Symbolic Forms”. 
But that is doubtful in view of Weyl’s critical remarks about Cassirer’s very wide use of 
the notion of ‘symbolic form’. Weyl finds it difficult to read Cassirer’s Philosophy of 
Symbolic Forms as “variations on a single theme” (Weyl 2009: 195). 
41 Weyl uses this example several times in his publications. 
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sequences of sounds may already have disappeared into silence. So 
the stroke-symbols are in that sense time-resistant and serve the 
purpose of preservation and communication, which are crucial 
features of a symbolic construction. For relatively small number 

symbols like these we see immediately that 6 ˃ 4, but for larger 
numbers a certain manipulation in the symbolism may be 
necessary: We cross out the first stroke from each symbol and 
repeat this operation until one symbol is exhausted. 

If the ordinary number-signs 1, 2, 3, … belong to the 
symbolism, we would also have the rules or conventions: 

1  = |,  2  =  | |,  3  =  | | |, … 

where the equality sign means that one symbol may be replaced by 
the other. An arbitrary numerical stroke sign | | | | | | |, say, is 
thus of the form: 

(((((((|)|)|)|)|)|)|) 

which we may call “the normal form” of this numeral. Here we see 
that the number signs that are ‘smaller than’ | | | | | | | are 
proper parts of this number sign. We take this relationship to define 
‘smaller than’. Calling this number sign “arbitrary” means here that 
the process of constructing numeral stroke signs is without end; no 
limit to the length of a number sign is stipulated. In order to define 
the general numerical stroke sign, we introduce an arbitrary letter 
“n”, and define the general numerical stroke sign as the sign 
complexes obtained from “n” after eliminating “n” by either 
replacing “n” by “n |” or replacing “n” by “|”. The stroke sign | | 
| |, for instance, is obtained after four operations, deriving in turn 
n, n |, n | |, n | | |, | | | |; here we have replaced “n” by “n |” 
three times in succession, and then replaced “n” by “|”. Here the 
symbol “n |” is the successor-operation, usually written n+1, and the 
symbol “n” is the number variable. 

Defining the general numerical stroke sign in this way is what 
Weyl expresses in mathematical prose by saying that we have 
embedded the “the actually occurring number symbols into the 
sequence of all possible numbers. This sequence originates by 
means of a generating process in accordance with the principle that 
from a given number a new one, the following one, can always be 
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generated by adding the unit” (Weyl 2009: 118). And he adds, 
“Only then does arithmetic proper come into existence with its 
characteristic principle of the so-called complete induction, the 
conclusion from n to n+1.” 

Weyl also points out that it is “the determination of numbers 
which is of an essentially symbolic character. ‘There were 4 tones’ 
is unintelligible without reference to a symbol” (Weyl 1949: 36). 
The determination of the number of objects of a collection, takes 
place through counting, but as R.L. Goodstein has emphasized, 
counting is at bottom not a process of discovery, but of 
transformation (Goodstein 1956: 124).42 This is so because the only 
difference between counting objects of a collection, and 
transforming a number-sign pattern lies in the initial step of 
replacing each object by “ |”, i.e. regarding each object of the 
collection as a unit, as one. So imagining this replacement as having 
been carried out for a collection of objects, we are regarding the 
collection of objects as a number sign. Counting then consists in 
transforming the collection, regarded as a number sign, into a 
conventional numeral that presents the numeral in its “normal 
form”. 

As mentioned before, there is an ambiguity in the conventional 
use of the words “sign” and “symbol” (in Weyl’s account, for 
instance). The word “sign” is often used for the symbol expressed 
by that sign, and conversely the word “symbol” is sometimes used 
for the sign expressing a symbol, and the context is taken to be 
sufficient to indicate what is meant. There is of course an 
important difference between “sign” and “symbol”, as between a 
numeral (or number sign) on one hand and a number on the other. 
The number 2 is the role or function of the number sign 2 in the 
arithmetical symbolism. The numbers sign 2 and the Roman 
number sign II are different signs, but they express the same 
symbol, the same number when they are used, for instance, as page 
numbers in books. 

                                                           
42 This article by Goodstein deserves more attention by philosophers of mathematics. It 
would have deserved the title “The Origin and Foundation of Modern Arithmetic”. 
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One important thing to understand about this arithmetical 
example is how the construction of a symbolism is not just the 
introduction of a notation; it is also the introduction of an 
operative symbolism, i.e. rules for operating with signs. And, of 
course, it is not the introduction of signs as ‘syntactical objects’ (in 
the sense of Carnap and Tarski) to denote abstract or ideal objects 
having an independent existence in an ontological or mental realm. 
Weyl expresses the non-ontological nature of his symbolic 
conception of arithmetic as follows: 

If one wants to speak, all the same, of numbers as concepts or ideal 
objects, one must at any rate refrain from giving them independent 
existence; their being exhausts itself in the functional role which they 
play and their relations of more or less. (They certainly are not 
concepts in the sense of Aristotle’s theory of abstraction.)  (Weyl 1949: 
36) 

The concept of truth will not be of any special importance in 
Weyl’s symbolic arithmetic, any more than in symbolic 
mathematics in general. The reason is of course that the 
propositions of symbolic mathematics are not about some 
independently existing objects or states of affairs. 
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